Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbo Structured version   Visualization version   GIF version

Theorem sbgoldbo 44912
Description: If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021.)
Hypothesis
Ref Expression
sbgoldbo.p 𝑃 = ({1} ∪ ℙ)
Assertion
Ref Expression
sbgoldbo (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘3)∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable groups:   𝑃,𝑝,𝑞,𝑟   𝑛,𝑝,𝑞,𝑟
Allowed substitution hint:   𝑃(𝑛)

Proof of Theorem sbgoldbo
StepHypRef Expression
1 nfra1 3140 . 2 𝑛𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven )
2 3z 12210 . . . . 5 3 ∈ ℤ
3 6nn 11919 . . . . . 6 6 ∈ ℕ
43nnzi 12201 . . . . 5 6 ∈ ℤ
5 3re 11910 . . . . . 6 3 ∈ ℝ
6 6re 11920 . . . . . 6 6 ∈ ℝ
7 3lt6 12013 . . . . . 6 3 < 6
85, 6, 7ltleii 10955 . . . . 5 3 ≤ 6
9 eluz2 12444 . . . . 5 (6 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 6 ∈ ℤ ∧ 3 ≤ 6))
102, 4, 8, 9mpbir3an 1343 . . . 4 6 ∈ (ℤ‘3)
11 uzsplit 13184 . . . . 5 (6 ∈ (ℤ‘3) → (ℤ‘3) = ((3...(6 − 1)) ∪ (ℤ‘6)))
1211eleq2d 2823 . . . 4 (6 ∈ (ℤ‘3) → (𝑛 ∈ (ℤ‘3) ↔ 𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6))))
1310, 12ax-mp 5 . . 3 (𝑛 ∈ (ℤ‘3) ↔ 𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)))
14 elun 4063 . . . . 5 (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) ↔ (𝑛 ∈ (3...(6 − 1)) ∨ 𝑛 ∈ (ℤ‘6)))
15 6m1e5 11961 . . . . . . . . . 10 (6 − 1) = 5
1615oveq2i 7224 . . . . . . . . 9 (3...(6 − 1)) = (3...5)
17 5nn 11916 . . . . . . . . . . . 12 5 ∈ ℕ
1817nnzi 12201 . . . . . . . . . . 11 5 ∈ ℤ
19 5re 11917 . . . . . . . . . . . 12 5 ∈ ℝ
20 3lt5 12008 . . . . . . . . . . . 12 3 < 5
215, 19, 20ltleii 10955 . . . . . . . . . . 11 3 ≤ 5
22 eluz2 12444 . . . . . . . . . . 11 (5 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ≤ 5))
232, 18, 21, 22mpbir3an 1343 . . . . . . . . . 10 5 ∈ (ℤ‘3)
24 fzopredsuc 44488 . . . . . . . . . 10 (5 ∈ (ℤ‘3) → (3...5) = (({3} ∪ ((3 + 1)..^5)) ∪ {5}))
2523, 24ax-mp 5 . . . . . . . . 9 (3...5) = (({3} ∪ ((3 + 1)..^5)) ∪ {5})
2616, 25eqtri 2765 . . . . . . . 8 (3...(6 − 1)) = (({3} ∪ ((3 + 1)..^5)) ∪ {5})
2726eleq2i 2829 . . . . . . 7 (𝑛 ∈ (3...(6 − 1)) ↔ 𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}))
28 elun 4063 . . . . . . . . 9 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) ↔ (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ∨ 𝑛 ∈ {5}))
29 elun 4063 . . . . . . . . . . 11 (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ↔ (𝑛 ∈ {3} ∨ 𝑛 ∈ ((3 + 1)..^5)))
30 elsni 4558 . . . . . . . . . . . . 13 (𝑛 ∈ {3} → 𝑛 = 3)
31 1ex 10829 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
3231snid 4577 . . . . . . . . . . . . . . . . . 18 1 ∈ {1}
3332orci 865 . . . . . . . . . . . . . . . . 17 (1 ∈ {1} ∨ 1 ∈ ℙ)
34 elun 4063 . . . . . . . . . . . . . . . . 17 (1 ∈ ({1} ∪ ℙ) ↔ (1 ∈ {1} ∨ 1 ∈ ℙ))
3533, 34mpbir 234 . . . . . . . . . . . . . . . 16 1 ∈ ({1} ∪ ℙ)
36 sbgoldbo.p . . . . . . . . . . . . . . . 16 𝑃 = ({1} ∪ ℙ)
3735, 36eleqtrri 2837 . . . . . . . . . . . . . . 15 1 ∈ 𝑃
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 3 → 1 ∈ 𝑃)
39 simpl 486 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑝 = 1) → 𝑛 = 3)
40 oveq1 7220 . . . . . . . . . . . . . . . . . 18 (𝑝 = 1 → (𝑝 + 𝑞) = (1 + 𝑞))
4140oveq1d 7228 . . . . . . . . . . . . . . . . 17 (𝑝 = 1 → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟))
4241adantl 485 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑝 = 1) → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟))
4339, 42eqeq12d 2753 . . . . . . . . . . . . . . 15 ((𝑛 = 3 ∧ 𝑝 = 1) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 3 = ((1 + 𝑞) + 𝑟)))
44432rexbidv 3219 . . . . . . . . . . . . . 14 ((𝑛 = 3 ∧ 𝑝 = 1) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟)))
45 oveq2 7221 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 1 → (1 + 𝑞) = (1 + 1))
4645oveq1d 7228 . . . . . . . . . . . . . . . . . 18 (𝑞 = 1 → ((1 + 𝑞) + 𝑟) = ((1 + 1) + 𝑟))
4746eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (3 = ((1 + 𝑞) + 𝑟) ↔ 3 = ((1 + 1) + 𝑟)))
4847rexbidv 3216 . . . . . . . . . . . . . . . 16 (𝑞 = 1 → (∃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 3 = ((1 + 1) + 𝑟)))
4948adantl 485 . . . . . . . . . . . . . . 15 ((𝑛 = 3 ∧ 𝑞 = 1) → (∃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 3 = ((1 + 1) + 𝑟)))
50 df-3 11894 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
51 df-2 11893 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
5251oveq1i 7223 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = ((1 + 1) + 1)
5350, 52eqtri 2765 . . . . . . . . . . . . . . . . . 18 3 = ((1 + 1) + 1)
54 oveq2 7221 . . . . . . . . . . . . . . . . . 18 (𝑟 = 1 → ((1 + 1) + 𝑟) = ((1 + 1) + 1))
5553, 54eqtr4id 2797 . . . . . . . . . . . . . . . . 17 (𝑟 = 1 → 3 = ((1 + 1) + 𝑟))
5655adantl 485 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑟 = 1) → 3 = ((1 + 1) + 𝑟))
5738, 56rspcedeq2vd 3544 . . . . . . . . . . . . . . 15 (𝑛 = 3 → ∃𝑟𝑃 3 = ((1 + 1) + 𝑟))
5838, 49, 57rspcedvd 3540 . . . . . . . . . . . . . 14 (𝑛 = 3 → ∃𝑞𝑃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟))
5938, 44, 58rspcedvd 3540 . . . . . . . . . . . . 13 (𝑛 = 3 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
6030, 59syl 17 . . . . . . . . . . . 12 (𝑛 ∈ {3} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
61 3p1e4 11975 . . . . . . . . . . . . . . . . 17 (3 + 1) = 4
62 df-5 11896 . . . . . . . . . . . . . . . . 17 5 = (4 + 1)
6361, 62oveq12i 7225 . . . . . . . . . . . . . . . 16 ((3 + 1)..^5) = (4..^(4 + 1))
64 4z 12211 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
65 fzval3 13311 . . . . . . . . . . . . . . . . 17 (4 ∈ ℤ → (4...4) = (4..^(4 + 1)))
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 (4...4) = (4..^(4 + 1))
6763, 66eqtr4i 2768 . . . . . . . . . . . . . . 15 ((3 + 1)..^5) = (4...4)
6867eleq2i 2829 . . . . . . . . . . . . . 14 (𝑛 ∈ ((3 + 1)..^5) ↔ 𝑛 ∈ (4...4))
69 fzsn 13154 . . . . . . . . . . . . . . . 16 (4 ∈ ℤ → (4...4) = {4})
7064, 69ax-mp 5 . . . . . . . . . . . . . . 15 (4...4) = {4}
7170eleq2i 2829 . . . . . . . . . . . . . 14 (𝑛 ∈ (4...4) ↔ 𝑛 ∈ {4})
7268, 71bitri 278 . . . . . . . . . . . . 13 (𝑛 ∈ ((3 + 1)..^5) ↔ 𝑛 ∈ {4})
73 elsni 4558 . . . . . . . . . . . . . 14 (𝑛 ∈ {4} → 𝑛 = 4)
74 2prm 16249 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
7574olci 866 . . . . . . . . . . . . . . . . . 18 (2 ∈ {1} ∨ 2 ∈ ℙ)
76 elun 4063 . . . . . . . . . . . . . . . . . 18 (2 ∈ ({1} ∪ ℙ) ↔ (2 ∈ {1} ∨ 2 ∈ ℙ))
7775, 76mpbir 234 . . . . . . . . . . . . . . . . 17 2 ∈ ({1} ∪ ℙ)
7877, 36eleqtrri 2837 . . . . . . . . . . . . . . . 16 2 ∈ 𝑃
7978a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 4 → 2 ∈ 𝑃)
80 oveq1 7220 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞))
8180oveq1d 7228 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟))
8281eqeq2d 2748 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 𝑞) + 𝑟)))
83822rexbidv 3219 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟)))
8483adantl 485 . . . . . . . . . . . . . . 15 ((𝑛 = 4 ∧ 𝑝 = 2) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟)))
8537a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 = 4 → 1 ∈ 𝑃)
86 oveq2 7221 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 1 → (2 + 𝑞) = (2 + 1))
8786oveq1d 7228 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 1 → ((2 + 𝑞) + 𝑟) = ((2 + 1) + 𝑟))
8887eqeq2d 2748 . . . . . . . . . . . . . . . . . 18 (𝑞 = 1 → (𝑛 = ((2 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 1) + 𝑟)))
8988rexbidv 3216 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (∃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟)))
9089adantl 485 . . . . . . . . . . . . . . . 16 ((𝑛 = 4 ∧ 𝑞 = 1) → (∃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟)))
91 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = 4)
92 df-4 11895 . . . . . . . . . . . . . . . . . . . . 21 4 = (3 + 1)
9350oveq1i 7223 . . . . . . . . . . . . . . . . . . . . 21 (3 + 1) = ((2 + 1) + 1)
9492, 93eqtri 2765 . . . . . . . . . . . . . . . . . . . 20 4 = ((2 + 1) + 1)
9594a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) + 1))
96 oveq2 7221 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 1 → ((2 + 1) + 𝑟) = ((2 + 1) + 1))
9796eqcomd 2743 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 1 → ((2 + 1) + 1) = ((2 + 1) + 𝑟))
9897adantl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 4 ∧ 𝑟 = 1) → ((2 + 1) + 1) = ((2 + 1) + 𝑟))
9995, 98eqtrd 2777 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) + 𝑟))
10091, 99eqtrd 2777 . . . . . . . . . . . . . . . . 17 ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = ((2 + 1) + 𝑟))
10185, 100rspcedeq2vd 3544 . . . . . . . . . . . . . . . 16 (𝑛 = 4 → ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟))
10285, 90, 101rspcedvd 3540 . . . . . . . . . . . . . . 15 (𝑛 = 4 → ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟))
10379, 84, 102rspcedvd 3540 . . . . . . . . . . . . . 14 (𝑛 = 4 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10473, 103syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ {4} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10572, 104sylbi 220 . . . . . . . . . . . 12 (𝑛 ∈ ((3 + 1)..^5) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10660, 105jaoi 857 . . . . . . . . . . 11 ((𝑛 ∈ {3} ∨ 𝑛 ∈ ((3 + 1)..^5)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10729, 106sylbi 220 . . . . . . . . . 10 (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
108 elsni 4558 . . . . . . . . . . 11 (𝑛 ∈ {5} → 𝑛 = 5)
109 3prm 16251 . . . . . . . . . . . . . . . 16 3 ∈ ℙ
110109olci 866 . . . . . . . . . . . . . . 15 (3 ∈ {1} ∨ 3 ∈ ℙ)
111 elun 4063 . . . . . . . . . . . . . . 15 (3 ∈ ({1} ∪ ℙ) ↔ (3 ∈ {1} ∨ 3 ∈ ℙ))
112110, 111mpbir 234 . . . . . . . . . . . . . 14 3 ∈ ({1} ∪ ℙ)
113112, 36eleqtrri 2837 . . . . . . . . . . . . 13 3 ∈ 𝑃
114113a1i 11 . . . . . . . . . . . 12 (𝑛 = 5 → 3 ∈ 𝑃)
115 oveq1 7220 . . . . . . . . . . . . . . . 16 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
116115oveq1d 7228 . . . . . . . . . . . . . . 15 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
117116eqeq2d 2748 . . . . . . . . . . . . . 14 (𝑝 = 3 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 𝑞) + 𝑟)))
1181172rexbidv 3219 . . . . . . . . . . . . 13 (𝑝 = 3 → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟)))
119118adantl 485 . . . . . . . . . . . 12 ((𝑛 = 5 ∧ 𝑝 = 3) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟)))
12037a1i 11 . . . . . . . . . . . . 13 (𝑛 = 5 → 1 ∈ 𝑃)
121 oveq2 7221 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (3 + 𝑞) = (3 + 1))
122121oveq1d 7228 . . . . . . . . . . . . . . . 16 (𝑞 = 1 → ((3 + 𝑞) + 𝑟) = ((3 + 1) + 𝑟))
123122eqeq2d 2748 . . . . . . . . . . . . . . 15 (𝑞 = 1 → (𝑛 = ((3 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 1) + 𝑟)))
124123rexbidv 3216 . . . . . . . . . . . . . 14 (𝑞 = 1 → (∃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟)))
125124adantl 485 . . . . . . . . . . . . 13 ((𝑛 = 5 ∧ 𝑞 = 1) → (∃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟)))
126 simpl 486 . . . . . . . . . . . . . . 15 ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = 5)
12792oveq1i 7223 . . . . . . . . . . . . . . . . . 18 (4 + 1) = ((3 + 1) + 1)
12862, 127eqtri 2765 . . . . . . . . . . . . . . . . 17 5 = ((3 + 1) + 1)
129 oveq2 7221 . . . . . . . . . . . . . . . . 17 (𝑟 = 1 → ((3 + 1) + 𝑟) = ((3 + 1) + 1))
130128, 129eqtr4id 2797 . . . . . . . . . . . . . . . 16 (𝑟 = 1 → 5 = ((3 + 1) + 𝑟))
131130adantl 485 . . . . . . . . . . . . . . 15 ((𝑛 = 5 ∧ 𝑟 = 1) → 5 = ((3 + 1) + 𝑟))
132126, 131eqtrd 2777 . . . . . . . . . . . . . 14 ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = ((3 + 1) + 𝑟))
133120, 132rspcedeq2vd 3544 . . . . . . . . . . . . 13 (𝑛 = 5 → ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟))
134120, 125, 133rspcedvd 3540 . . . . . . . . . . . 12 (𝑛 = 5 → ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟))
135114, 119, 134rspcedvd 3540 . . . . . . . . . . 11 (𝑛 = 5 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
136108, 135syl 17 . . . . . . . . . 10 (𝑛 ∈ {5} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
137107, 136jaoi 857 . . . . . . . . 9 ((𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ∨ 𝑛 ∈ {5}) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
13828, 137sylbi 220 . . . . . . . 8 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
139138a1d 25 . . . . . . 7 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
14027, 139sylbi 220 . . . . . 6 (𝑛 ∈ (3...(6 − 1)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
141 sbgoldbm 44909 . . . . . . . 8 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
142 rspa 3128 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
143 ssun2 4087 . . . . . . . . . . . . 13 ℙ ⊆ ({1} ∪ ℙ)
144143, 36sseqtrri 3938 . . . . . . . . . . . 12 ℙ ⊆ 𝑃
145 rexss 3972 . . . . . . . . . . . 12 (ℙ ⊆ 𝑃 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
146144, 145ax-mp 5 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
147 rexss 3972 . . . . . . . . . . . . . . 15 (ℙ ⊆ 𝑃 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
148144, 147ax-mp 5 . . . . . . . . . . . . . 14 (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
149 rexss 3972 . . . . . . . . . . . . . . . . . 18 (ℙ ⊆ 𝑃 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
150144, 149ax-mp 5 . . . . . . . . . . . . . . . . 17 (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
151 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 = ((𝑝 + 𝑞) + 𝑟))
152151reximi 3166 . . . . . . . . . . . . . . . . 17 (∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
153150, 152sylbi 220 . . . . . . . . . . . . . . . 16 (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
154153adantl 485 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
155154reximi 3166 . . . . . . . . . . . . . 14 (∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
156148, 155sylbi 220 . . . . . . . . . . . . 13 (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
157156adantl 485 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
158157reximi 3166 . . . . . . . . . . 11 (∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
159146, 158sylbi 220 . . . . . . . . . 10 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
160142, 159syl 17 . . . . . . . . 9 ((∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
161160ex 416 . . . . . . . 8 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ (ℤ‘6) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
162141, 161syl 17 . . . . . . 7 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ (ℤ‘6) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
163162com12 32 . . . . . 6 (𝑛 ∈ (ℤ‘6) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
164140, 163jaoi 857 . . . . 5 ((𝑛 ∈ (3...(6 − 1)) ∨ 𝑛 ∈ (ℤ‘6)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
16514, 164sylbi 220 . . . 4 (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
166165com12 32 . . 3 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
16713, 166syl5bi 245 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ (ℤ‘3) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
1681, 167ralrimi 3137 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘3)∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wral 3061  wrex 3062  cun 3864  wss 3866  {csn 4541   class class class wbr 5053  cfv 6380  (class class class)co 7213  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  2c2 11885  3c3 11886  4c4 11887  5c5 11888  6c6 11889  cz 12176  cuz 12438  ...cfz 13095  ..^cfzo 13238  cprime 16228   Even ceven 44749   GoldbachEven cgbe 44870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-prm 16229  df-even 44751  df-odd 44752  df-gbe 44873  df-gbow 44874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator