Proof of Theorem sbgoldbo
Step | Hyp | Ref
| Expression |
1 | | nfra1 3140 |
. 2
⊢
Ⅎ𝑛∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) |
2 | | 3z 12210 |
. . . . 5
⊢ 3 ∈
ℤ |
3 | | 6nn 11919 |
. . . . . 6
⊢ 6 ∈
ℕ |
4 | 3 | nnzi 12201 |
. . . . 5
⊢ 6 ∈
ℤ |
5 | | 3re 11910 |
. . . . . 6
⊢ 3 ∈
ℝ |
6 | | 6re 11920 |
. . . . . 6
⊢ 6 ∈
ℝ |
7 | | 3lt6 12013 |
. . . . . 6
⊢ 3 <
6 |
8 | 5, 6, 7 | ltleii 10955 |
. . . . 5
⊢ 3 ≤
6 |
9 | | eluz2 12444 |
. . . . 5
⊢ (6 ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 6 ∈
ℤ ∧ 3 ≤ 6)) |
10 | 2, 4, 8, 9 | mpbir3an 1343 |
. . . 4
⊢ 6 ∈
(ℤ≥‘3) |
11 | | uzsplit 13184 |
. . . . 5
⊢ (6 ∈
(ℤ≥‘3) → (ℤ≥‘3) =
((3...(6 − 1)) ∪ (ℤ≥‘6))) |
12 | 11 | eleq2d 2823 |
. . . 4
⊢ (6 ∈
(ℤ≥‘3) → (𝑛 ∈ (ℤ≥‘3)
↔ 𝑛 ∈ ((3...(6
− 1)) ∪ (ℤ≥‘6)))) |
13 | 10, 12 | ax-mp 5 |
. . 3
⊢ (𝑛 ∈
(ℤ≥‘3) ↔ 𝑛 ∈ ((3...(6 − 1)) ∪
(ℤ≥‘6))) |
14 | | elun 4063 |
. . . . 5
⊢ (𝑛 ∈ ((3...(6 − 1))
∪ (ℤ≥‘6)) ↔ (𝑛 ∈ (3...(6 − 1)) ∨ 𝑛 ∈
(ℤ≥‘6))) |
15 | | 6m1e5 11961 |
. . . . . . . . . 10
⊢ (6
− 1) = 5 |
16 | 15 | oveq2i 7224 |
. . . . . . . . 9
⊢ (3...(6
− 1)) = (3...5) |
17 | | 5nn 11916 |
. . . . . . . . . . . 12
⊢ 5 ∈
ℕ |
18 | 17 | nnzi 12201 |
. . . . . . . . . . 11
⊢ 5 ∈
ℤ |
19 | | 5re 11917 |
. . . . . . . . . . . 12
⊢ 5 ∈
ℝ |
20 | | 3lt5 12008 |
. . . . . . . . . . . 12
⊢ 3 <
5 |
21 | 5, 19, 20 | ltleii 10955 |
. . . . . . . . . . 11
⊢ 3 ≤
5 |
22 | | eluz2 12444 |
. . . . . . . . . . 11
⊢ (5 ∈
(ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 5 ∈
ℤ ∧ 3 ≤ 5)) |
23 | 2, 18, 21, 22 | mpbir3an 1343 |
. . . . . . . . . 10
⊢ 5 ∈
(ℤ≥‘3) |
24 | | fzopredsuc 44488 |
. . . . . . . . . 10
⊢ (5 ∈
(ℤ≥‘3) → (3...5) = (({3} ∪ ((3 + 1)..^5))
∪ {5})) |
25 | 23, 24 | ax-mp 5 |
. . . . . . . . 9
⊢ (3...5) =
(({3} ∪ ((3 + 1)..^5)) ∪ {5}) |
26 | 16, 25 | eqtri 2765 |
. . . . . . . 8
⊢ (3...(6
− 1)) = (({3} ∪ ((3 + 1)..^5)) ∪ {5}) |
27 | 26 | eleq2i 2829 |
. . . . . . 7
⊢ (𝑛 ∈ (3...(6 − 1))
↔ 𝑛 ∈ (({3} ∪
((3 + 1)..^5)) ∪ {5})) |
28 | | elun 4063 |
. . . . . . . . 9
⊢ (𝑛 ∈ (({3} ∪ ((3 +
1)..^5)) ∪ {5}) ↔ (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ∨ 𝑛 ∈ {5})) |
29 | | elun 4063 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ({3} ∪ ((3 +
1)..^5)) ↔ (𝑛 ∈
{3} ∨ 𝑛 ∈ ((3 +
1)..^5))) |
30 | | elsni 4558 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {3} → 𝑛 = 3) |
31 | | 1ex 10829 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
V |
32 | 31 | snid 4577 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
{1} |
33 | 32 | orci 865 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
{1} ∨ 1 ∈ ℙ) |
34 | | elun 4063 |
. . . . . . . . . . . . . . . . 17
⊢ (1 ∈
({1} ∪ ℙ) ↔ (1 ∈ {1} ∨ 1 ∈
ℙ)) |
35 | 33, 34 | mpbir 234 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
({1} ∪ ℙ) |
36 | | sbgoldbo.p |
. . . . . . . . . . . . . . . 16
⊢ 𝑃 = ({1} ∪
ℙ) |
37 | 35, 36 | eleqtrri 2837 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
𝑃 |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 3 → 1 ∈ 𝑃) |
39 | | simpl 486 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 = 3 ∧ 𝑝 = 1) → 𝑛 = 3) |
40 | | oveq1 7220 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 1 → (𝑝 + 𝑞) = (1 + 𝑞)) |
41 | 40 | oveq1d 7228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 1 → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟)) |
42 | 41 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 = 3 ∧ 𝑝 = 1) → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟)) |
43 | 39, 42 | eqeq12d 2753 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 3 ∧ 𝑝 = 1) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 3 = ((1 + 𝑞) + 𝑟))) |
44 | 43 | 2rexbidv 3219 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 = 3 ∧ 𝑝 = 1) → (∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 3 = ((1 + 𝑞) + 𝑟))) |
45 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 = 1 → (1 + 𝑞) = (1 + 1)) |
46 | 45 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 = 1 → ((1 + 𝑞) + 𝑟) = ((1 + 1) + 𝑟)) |
47 | 46 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 1 → (3 = ((1 + 𝑞) + 𝑟) ↔ 3 = ((1 + 1) + 𝑟))) |
48 | 47 | rexbidv 3216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 1 → (∃𝑟 ∈ 𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 3 = ((1 + 1) + 𝑟))) |
49 | 48 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 3 ∧ 𝑞 = 1) → (∃𝑟 ∈ 𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 3 = ((1 + 1) + 𝑟))) |
50 | | df-3 11894 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 = (2 +
1) |
51 | | df-2 11893 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 = (1 +
1) |
52 | 51 | oveq1i 7223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 + 1) =
((1 + 1) + 1) |
53 | 50, 52 | eqtri 2765 |
. . . . . . . . . . . . . . . . . 18
⊢ 3 = ((1 +
1) + 1) |
54 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 1 → ((1 + 1) + 𝑟) = ((1 + 1) +
1)) |
55 | 53, 54 | eqtr4id 2797 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 1 → 3 = ((1 + 1) + 𝑟)) |
56 | 55 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 = 3 ∧ 𝑟 = 1) → 3 = ((1 + 1) + 𝑟)) |
57 | 38, 56 | rspcedeq2vd 3544 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 3 → ∃𝑟 ∈ 𝑃 3 = ((1 + 1) + 𝑟)) |
58 | 38, 49, 57 | rspcedvd 3540 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 3 → ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 3 = ((1 + 𝑞) + 𝑟)) |
59 | 38, 44, 58 | rspcedvd 3540 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 3 → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
60 | 30, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ {3} → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
61 | | 3p1e4 11975 |
. . . . . . . . . . . . . . . . 17
⊢ (3 + 1) =
4 |
62 | | df-5 11896 |
. . . . . . . . . . . . . . . . 17
⊢ 5 = (4 +
1) |
63 | 61, 62 | oveq12i 7225 |
. . . . . . . . . . . . . . . 16
⊢ ((3 +
1)..^5) = (4..^(4 + 1)) |
64 | | 4z 12211 |
. . . . . . . . . . . . . . . . 17
⊢ 4 ∈
ℤ |
65 | | fzval3 13311 |
. . . . . . . . . . . . . . . . 17
⊢ (4 ∈
ℤ → (4...4) = (4..^(4 + 1))) |
66 | 64, 65 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (4...4) =
(4..^(4 + 1)) |
67 | 63, 66 | eqtr4i 2768 |
. . . . . . . . . . . . . . 15
⊢ ((3 +
1)..^5) = (4...4) |
68 | 67 | eleq2i 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ((3 + 1)..^5) ↔
𝑛 ∈
(4...4)) |
69 | | fzsn 13154 |
. . . . . . . . . . . . . . . 16
⊢ (4 ∈
ℤ → (4...4) = {4}) |
70 | 64, 69 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (4...4) =
{4} |
71 | 70 | eleq2i 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (4...4) ↔ 𝑛 ∈ {4}) |
72 | 68, 71 | bitri 278 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ((3 + 1)..^5) ↔
𝑛 ∈
{4}) |
73 | | elsni 4558 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {4} → 𝑛 = 4) |
74 | | 2prm 16249 |
. . . . . . . . . . . . . . . . . . 19
⊢ 2 ∈
ℙ |
75 | 74 | olci 866 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 ∈
{1} ∨ 2 ∈ ℙ) |
76 | | elun 4063 |
. . . . . . . . . . . . . . . . . 18
⊢ (2 ∈
({1} ∪ ℙ) ↔ (2 ∈ {1} ∨ 2 ∈
ℙ)) |
77 | 75, 76 | mpbir 234 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
({1} ∪ ℙ) |
78 | 77, 36 | eleqtrri 2837 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
𝑃 |
79 | 78 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 4 → 2 ∈ 𝑃) |
80 | | oveq1 7220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞)) |
81 | 80 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟)) |
82 | 81 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 2 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 𝑞) + 𝑟))) |
83 | 82 | 2rexbidv 3219 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 2 → (∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((2 + 𝑞) + 𝑟))) |
84 | 83 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 4 ∧ 𝑝 = 2) → (∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((2 + 𝑞) + 𝑟))) |
85 | 37 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 4 → 1 ∈ 𝑃) |
86 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 = 1 → (2 + 𝑞) = (2 + 1)) |
87 | 86 | oveq1d 7228 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑞 = 1 → ((2 + 𝑞) + 𝑟) = ((2 + 1) + 𝑟)) |
88 | 87 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑞 = 1 → (𝑛 = ((2 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 1) + 𝑟))) |
89 | 88 | rexbidv 3216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 1 → (∃𝑟 ∈ 𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 𝑛 = ((2 + 1) + 𝑟))) |
90 | 89 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 = 4 ∧ 𝑞 = 1) → (∃𝑟 ∈ 𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 𝑛 = ((2 + 1) + 𝑟))) |
91 | | simpl 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = 4) |
92 | | df-4 11895 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 4 = (3 +
1) |
93 | 50 | oveq1i 7223 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (3 + 1) =
((2 + 1) + 1) |
94 | 92, 93 | eqtri 2765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 4 = ((2 +
1) + 1) |
95 | 94 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) +
1)) |
96 | | oveq2 7221 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 = 1 → ((2 + 1) + 𝑟) = ((2 + 1) +
1)) |
97 | 96 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 1 → ((2 + 1) + 1) = ((2
+ 1) + 𝑟)) |
98 | 97 | adantl 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 = 4 ∧ 𝑟 = 1) → ((2 + 1) + 1) = ((2 + 1) + 𝑟)) |
99 | 95, 98 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) + 𝑟)) |
100 | 91, 99 | eqtrd 2777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = ((2 + 1) + 𝑟)) |
101 | 85, 100 | rspcedeq2vd 3544 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 4 → ∃𝑟 ∈ 𝑃 𝑛 = ((2 + 1) + 𝑟)) |
102 | 85, 90, 101 | rspcedvd 3540 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 4 → ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((2 + 𝑞) + 𝑟)) |
103 | 79, 84, 102 | rspcedvd 3540 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 4 → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
104 | 73, 103 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ {4} → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
105 | 72, 104 | sylbi 220 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ((3 + 1)..^5) →
∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
106 | 60, 105 | jaoi 857 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ {3} ∨ 𝑛 ∈ ((3 + 1)..^5)) →
∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
107 | 29, 106 | sylbi 220 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ({3} ∪ ((3 +
1)..^5)) → ∃𝑝
∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
108 | | elsni 4558 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ {5} → 𝑛 = 5) |
109 | | 3prm 16251 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℙ |
110 | 109 | olci 866 |
. . . . . . . . . . . . . . 15
⊢ (3 ∈
{1} ∨ 3 ∈ ℙ) |
111 | | elun 4063 |
. . . . . . . . . . . . . . 15
⊢ (3 ∈
({1} ∪ ℙ) ↔ (3 ∈ {1} ∨ 3 ∈
ℙ)) |
112 | 110, 111 | mpbir 234 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
({1} ∪ ℙ) |
113 | 112, 36 | eleqtrri 2837 |
. . . . . . . . . . . . 13
⊢ 3 ∈
𝑃 |
114 | 113 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑛 = 5 → 3 ∈ 𝑃) |
115 | | oveq1 7220 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞)) |
116 | 115 | oveq1d 7228 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟)) |
117 | 116 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 3 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 𝑞) + 𝑟))) |
118 | 117 | 2rexbidv 3219 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 3 → (∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((3 + 𝑞) + 𝑟))) |
119 | 118 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑛 = 5 ∧ 𝑝 = 3) → (∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((3 + 𝑞) + 𝑟))) |
120 | 37 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 5 → 1 ∈ 𝑃) |
121 | | oveq2 7221 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 1 → (3 + 𝑞) = (3 + 1)) |
122 | 121 | oveq1d 7228 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 1 → ((3 + 𝑞) + 𝑟) = ((3 + 1) + 𝑟)) |
123 | 122 | eqeq2d 2748 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 1 → (𝑛 = ((3 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 1) + 𝑟))) |
124 | 123 | rexbidv 3216 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = 1 → (∃𝑟 ∈ 𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 𝑛 = ((3 + 1) + 𝑟))) |
125 | 124 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝑛 = 5 ∧ 𝑞 = 1) → (∃𝑟 ∈ 𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 𝑛 = ((3 + 1) + 𝑟))) |
126 | | simpl 486 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = 5) |
127 | 92 | oveq1i 7223 |
. . . . . . . . . . . . . . . . . 18
⊢ (4 + 1) =
((3 + 1) + 1) |
128 | 62, 127 | eqtri 2765 |
. . . . . . . . . . . . . . . . 17
⊢ 5 = ((3 +
1) + 1) |
129 | | oveq2 7221 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 1 → ((3 + 1) + 𝑟) = ((3 + 1) +
1)) |
130 | 128, 129 | eqtr4id 2797 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 1 → 5 = ((3 + 1) + 𝑟)) |
131 | 130 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 = 5 ∧ 𝑟 = 1) → 5 = ((3 + 1) + 𝑟)) |
132 | 126, 131 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = ((3 + 1) + 𝑟)) |
133 | 120, 132 | rspcedeq2vd 3544 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 5 → ∃𝑟 ∈ 𝑃 𝑛 = ((3 + 1) + 𝑟)) |
134 | 120, 125,
133 | rspcedvd 3540 |
. . . . . . . . . . . 12
⊢ (𝑛 = 5 → ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((3 + 𝑞) + 𝑟)) |
135 | 114, 119,
134 | rspcedvd 3540 |
. . . . . . . . . . 11
⊢ (𝑛 = 5 → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
136 | 108, 135 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ {5} → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
137 | 107, 136 | jaoi 857 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ({3} ∪ ((3 +
1)..^5)) ∨ 𝑛 ∈ {5})
→ ∃𝑝 ∈
𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
138 | 28, 137 | sylbi 220 |
. . . . . . . 8
⊢ (𝑛 ∈ (({3} ∪ ((3 +
1)..^5)) ∪ {5}) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
139 | 138 | a1d 25 |
. . . . . . 7
⊢ (𝑛 ∈ (({3} ∪ ((3 +
1)..^5)) ∪ {5}) → (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
140 | 27, 139 | sylbi 220 |
. . . . . 6
⊢ (𝑛 ∈ (3...(6 − 1))
→ (∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
141 | | sbgoldbm 44909 |
. . . . . . . 8
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
142 | | rspa 3128 |
. . . . . . . . . 10
⊢
((∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ≥‘6))
→ ∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
143 | | ssun2 4087 |
. . . . . . . . . . . . 13
⊢ ℙ
⊆ ({1} ∪ ℙ) |
144 | 143, 36 | sseqtrri 3938 |
. . . . . . . . . . . 12
⊢ ℙ
⊆ 𝑃 |
145 | | rexss 3972 |
. . . . . . . . . . . 12
⊢ (ℙ
⊆ 𝑃 →
(∃𝑝 ∈ ℙ
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ 𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
146 | 144, 145 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝 ∈ 𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
147 | | rexss 3972 |
. . . . . . . . . . . . . . 15
⊢ (ℙ
⊆ 𝑃 →
(∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞 ∈ 𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
148 | 144, 147 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞 ∈ 𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
149 | | rexss 3972 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℙ
⊆ 𝑃 →
(∃𝑟 ∈ ℙ
𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))) |
150 | 144, 149 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑟 ∈
ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟 ∈ 𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
151 | | simpr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
152 | 151 | reximi 3166 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑟 ∈
𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
153 | 150, 152 | sylbi 220 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑟 ∈
ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
154 | 153 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ ℙ ∧
∃𝑟 ∈ ℙ
𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
155 | 154 | reximi 3166 |
. . . . . . . . . . . . . 14
⊢
(∃𝑞 ∈
𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
156 | 148, 155 | sylbi 220 |
. . . . . . . . . . . . 13
⊢
(∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
157 | 156 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ ℙ ∧
∃𝑞 ∈ ℙ
∃𝑟 ∈ ℙ
𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
158 | 157 | reximi 3166 |
. . . . . . . . . . 11
⊢
(∃𝑝 ∈
𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
159 | 146, 158 | sylbi 220 |
. . . . . . . . . 10
⊢
(∃𝑝 ∈
ℙ ∃𝑞 ∈
ℙ ∃𝑟 ∈
ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
160 | 142, 159 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ≥‘6))
→ ∃𝑝 ∈
𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |
161 | 160 | ex 416 |
. . . . . . . 8
⊢
(∀𝑛 ∈
(ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ (ℤ≥‘6)
→ ∃𝑝 ∈
𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
162 | 141, 161 | syl 17 |
. . . . . . 7
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
(𝑛 ∈
(ℤ≥‘6) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
163 | 162 | com12 32 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘6) → (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
164 | 140, 163 | jaoi 857 |
. . . . 5
⊢ ((𝑛 ∈ (3...(6 − 1)) ∨
𝑛 ∈
(ℤ≥‘6)) → (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
165 | 14, 164 | sylbi 220 |
. . . 4
⊢ (𝑛 ∈ ((3...(6 − 1))
∪ (ℤ≥‘6)) → (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
166 | 165 | com12 32 |
. . 3
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
(𝑛 ∈ ((3...(6 −
1)) ∪ (ℤ≥‘6)) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
167 | 13, 166 | syl5bi 245 |
. 2
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
(𝑛 ∈
(ℤ≥‘3) → ∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))) |
168 | 1, 167 | ralrimi 3137 |
1
⊢
(∀𝑛 ∈
Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) →
∀𝑛 ∈
(ℤ≥‘3)∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) |