Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbo Structured version   Visualization version   GIF version

Theorem sbgoldbo 43434
Description: If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021.)
Hypothesis
Ref Expression
sbgoldbo.p 𝑃 = ({1} ∪ ℙ)
Assertion
Ref Expression
sbgoldbo (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘3)∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Distinct variable groups:   𝑃,𝑝,𝑞,𝑟   𝑛,𝑝,𝑞,𝑟
Allowed substitution hint:   𝑃(𝑛)

Proof of Theorem sbgoldbo
StepHypRef Expression
1 nfra1 3186 . 2 𝑛𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven )
2 3z 11864 . . . . 5 3 ∈ ℤ
3 6nn 11574 . . . . . 6 6 ∈ ℕ
43nnzi 11855 . . . . 5 6 ∈ ℤ
5 3re 11565 . . . . . 6 3 ∈ ℝ
6 6re 11575 . . . . . 6 6 ∈ ℝ
7 3lt6 11668 . . . . . 6 3 < 6
85, 6, 7ltleii 10610 . . . . 5 3 ≤ 6
9 eluz2 12099 . . . . 5 (6 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 6 ∈ ℤ ∧ 3 ≤ 6))
102, 4, 8, 9mpbir3an 1334 . . . 4 6 ∈ (ℤ‘3)
11 uzsplit 12829 . . . . 5 (6 ∈ (ℤ‘3) → (ℤ‘3) = ((3...(6 − 1)) ∪ (ℤ‘6)))
1211eleq2d 2868 . . . 4 (6 ∈ (ℤ‘3) → (𝑛 ∈ (ℤ‘3) ↔ 𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6))))
1310, 12ax-mp 5 . . 3 (𝑛 ∈ (ℤ‘3) ↔ 𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)))
14 elun 4046 . . . . 5 (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) ↔ (𝑛 ∈ (3...(6 − 1)) ∨ 𝑛 ∈ (ℤ‘6)))
15 6m1e5 11616 . . . . . . . . . 10 (6 − 1) = 5
1615oveq2i 7027 . . . . . . . . 9 (3...(6 − 1)) = (3...5)
17 5nn 11571 . . . . . . . . . . . 12 5 ∈ ℕ
1817nnzi 11855 . . . . . . . . . . 11 5 ∈ ℤ
19 5re 11572 . . . . . . . . . . . 12 5 ∈ ℝ
20 3lt5 11663 . . . . . . . . . . . 12 3 < 5
215, 19, 20ltleii 10610 . . . . . . . . . . 11 3 ≤ 5
22 eluz2 12099 . . . . . . . . . . 11 (5 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ≤ 5))
232, 18, 21, 22mpbir3an 1334 . . . . . . . . . 10 5 ∈ (ℤ‘3)
24 fzopredsuc 43039 . . . . . . . . . 10 (5 ∈ (ℤ‘3) → (3...5) = (({3} ∪ ((3 + 1)..^5)) ∪ {5}))
2523, 24ax-mp 5 . . . . . . . . 9 (3...5) = (({3} ∪ ((3 + 1)..^5)) ∪ {5})
2616, 25eqtri 2819 . . . . . . . 8 (3...(6 − 1)) = (({3} ∪ ((3 + 1)..^5)) ∪ {5})
2726eleq2i 2874 . . . . . . 7 (𝑛 ∈ (3...(6 − 1)) ↔ 𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}))
28 elun 4046 . . . . . . . . 9 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) ↔ (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ∨ 𝑛 ∈ {5}))
29 elun 4046 . . . . . . . . . . 11 (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ↔ (𝑛 ∈ {3} ∨ 𝑛 ∈ ((3 + 1)..^5)))
30 elsni 4489 . . . . . . . . . . . . 13 (𝑛 ∈ {3} → 𝑛 = 3)
31 1ex 10483 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
3231snid 4506 . . . . . . . . . . . . . . . . . 18 1 ∈ {1}
3332orci 860 . . . . . . . . . . . . . . . . 17 (1 ∈ {1} ∨ 1 ∈ ℙ)
34 elun 4046 . . . . . . . . . . . . . . . . 17 (1 ∈ ({1} ∪ ℙ) ↔ (1 ∈ {1} ∨ 1 ∈ ℙ))
3533, 34mpbir 232 . . . . . . . . . . . . . . . 16 1 ∈ ({1} ∪ ℙ)
36 sbgoldbo.p . . . . . . . . . . . . . . . 16 𝑃 = ({1} ∪ ℙ)
3735, 36eleqtrri 2882 . . . . . . . . . . . . . . 15 1 ∈ 𝑃
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 = 3 → 1 ∈ 𝑃)
39 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑝 = 1) → 𝑛 = 3)
40 oveq1 7023 . . . . . . . . . . . . . . . . . 18 (𝑝 = 1 → (𝑝 + 𝑞) = (1 + 𝑞))
4140oveq1d 7031 . . . . . . . . . . . . . . . . 17 (𝑝 = 1 → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟))
4241adantl 482 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑝 = 1) → ((𝑝 + 𝑞) + 𝑟) = ((1 + 𝑞) + 𝑟))
4339, 42eqeq12d 2810 . . . . . . . . . . . . . . 15 ((𝑛 = 3 ∧ 𝑝 = 1) → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 3 = ((1 + 𝑞) + 𝑟)))
44432rexbidv 3263 . . . . . . . . . . . . . 14 ((𝑛 = 3 ∧ 𝑝 = 1) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟)))
45 oveq2 7024 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 1 → (1 + 𝑞) = (1 + 1))
4645oveq1d 7031 . . . . . . . . . . . . . . . . . 18 (𝑞 = 1 → ((1 + 𝑞) + 𝑟) = ((1 + 1) + 𝑟))
4746eqeq2d 2805 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (3 = ((1 + 𝑞) + 𝑟) ↔ 3 = ((1 + 1) + 𝑟)))
4847rexbidv 3260 . . . . . . . . . . . . . . . 16 (𝑞 = 1 → (∃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 3 = ((1 + 1) + 𝑟)))
4948adantl 482 . . . . . . . . . . . . . . 15 ((𝑛 = 3 ∧ 𝑞 = 1) → (∃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 3 = ((1 + 1) + 𝑟)))
50 oveq2 7024 . . . . . . . . . . . . . . . . . 18 (𝑟 = 1 → ((1 + 1) + 𝑟) = ((1 + 1) + 1))
51 df-3 11549 . . . . . . . . . . . . . . . . . . 19 3 = (2 + 1)
52 df-2 11548 . . . . . . . . . . . . . . . . . . . 20 2 = (1 + 1)
5352oveq1i 7026 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = ((1 + 1) + 1)
5451, 53eqtri 2819 . . . . . . . . . . . . . . . . . 18 3 = ((1 + 1) + 1)
5550, 54syl6reqr 2850 . . . . . . . . . . . . . . . . 17 (𝑟 = 1 → 3 = ((1 + 1) + 𝑟))
5655adantl 482 . . . . . . . . . . . . . . . 16 ((𝑛 = 3 ∧ 𝑟 = 1) → 3 = ((1 + 1) + 𝑟))
5738, 56rspcedeq2vd 3569 . . . . . . . . . . . . . . 15 (𝑛 = 3 → ∃𝑟𝑃 3 = ((1 + 1) + 𝑟))
5838, 49, 57rspcedvd 3566 . . . . . . . . . . . . . 14 (𝑛 = 3 → ∃𝑞𝑃𝑟𝑃 3 = ((1 + 𝑞) + 𝑟))
5938, 44, 58rspcedvd 3566 . . . . . . . . . . . . 13 (𝑛 = 3 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
6030, 59syl 17 . . . . . . . . . . . 12 (𝑛 ∈ {3} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
61 3p1e4 11630 . . . . . . . . . . . . . . . . 17 (3 + 1) = 4
62 df-5 11551 . . . . . . . . . . . . . . . . 17 5 = (4 + 1)
6361, 62oveq12i 7028 . . . . . . . . . . . . . . . 16 ((3 + 1)..^5) = (4..^(4 + 1))
64 4z 11865 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
65 fzval3 12956 . . . . . . . . . . . . . . . . 17 (4 ∈ ℤ → (4...4) = (4..^(4 + 1)))
6664, 65ax-mp 5 . . . . . . . . . . . . . . . 16 (4...4) = (4..^(4 + 1))
6763, 66eqtr4i 2822 . . . . . . . . . . . . . . 15 ((3 + 1)..^5) = (4...4)
6867eleq2i 2874 . . . . . . . . . . . . . 14 (𝑛 ∈ ((3 + 1)..^5) ↔ 𝑛 ∈ (4...4))
69 fzsn 12799 . . . . . . . . . . . . . . . 16 (4 ∈ ℤ → (4...4) = {4})
7064, 69ax-mp 5 . . . . . . . . . . . . . . 15 (4...4) = {4}
7170eleq2i 2874 . . . . . . . . . . . . . 14 (𝑛 ∈ (4...4) ↔ 𝑛 ∈ {4})
7268, 71bitri 276 . . . . . . . . . . . . 13 (𝑛 ∈ ((3 + 1)..^5) ↔ 𝑛 ∈ {4})
73 elsni 4489 . . . . . . . . . . . . . 14 (𝑛 ∈ {4} → 𝑛 = 4)
74 2prm 15865 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℙ
7574olci 861 . . . . . . . . . . . . . . . . . 18 (2 ∈ {1} ∨ 2 ∈ ℙ)
76 elun 4046 . . . . . . . . . . . . . . . . . 18 (2 ∈ ({1} ∪ ℙ) ↔ (2 ∈ {1} ∨ 2 ∈ ℙ))
7775, 76mpbir 232 . . . . . . . . . . . . . . . . 17 2 ∈ ({1} ∪ ℙ)
7877, 36eleqtrri 2882 . . . . . . . . . . . . . . . 16 2 ∈ 𝑃
7978a1i 11 . . . . . . . . . . . . . . 15 (𝑛 = 4 → 2 ∈ 𝑃)
80 oveq1 7023 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → (𝑝 + 𝑞) = (2 + 𝑞))
8180oveq1d 7031 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((2 + 𝑞) + 𝑟))
8281eqeq2d 2805 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 𝑞) + 𝑟)))
83822rexbidv 3263 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟)))
8483adantl 482 . . . . . . . . . . . . . . 15 ((𝑛 = 4 ∧ 𝑝 = 2) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟)))
8537a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 = 4 → 1 ∈ 𝑃)
86 oveq2 7024 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 1 → (2 + 𝑞) = (2 + 1))
8786oveq1d 7031 . . . . . . . . . . . . . . . . . . 19 (𝑞 = 1 → ((2 + 𝑞) + 𝑟) = ((2 + 1) + 𝑟))
8887eqeq2d 2805 . . . . . . . . . . . . . . . . . 18 (𝑞 = 1 → (𝑛 = ((2 + 𝑞) + 𝑟) ↔ 𝑛 = ((2 + 1) + 𝑟)))
8988rexbidv 3260 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (∃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟)))
9089adantl 482 . . . . . . . . . . . . . . . 16 ((𝑛 = 4 ∧ 𝑞 = 1) → (∃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟)))
91 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = 4)
92 df-4 11550 . . . . . . . . . . . . . . . . . . . . 21 4 = (3 + 1)
9351oveq1i 7026 . . . . . . . . . . . . . . . . . . . . 21 (3 + 1) = ((2 + 1) + 1)
9492, 93eqtri 2819 . . . . . . . . . . . . . . . . . . . 20 4 = ((2 + 1) + 1)
9594a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) + 1))
96 oveq2 7024 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 1 → ((2 + 1) + 𝑟) = ((2 + 1) + 1))
9796eqcomd 2801 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 1 → ((2 + 1) + 1) = ((2 + 1) + 𝑟))
9897adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 4 ∧ 𝑟 = 1) → ((2 + 1) + 1) = ((2 + 1) + 𝑟))
9995, 98eqtrd 2831 . . . . . . . . . . . . . . . . . 18 ((𝑛 = 4 ∧ 𝑟 = 1) → 4 = ((2 + 1) + 𝑟))
10091, 99eqtrd 2831 . . . . . . . . . . . . . . . . 17 ((𝑛 = 4 ∧ 𝑟 = 1) → 𝑛 = ((2 + 1) + 𝑟))
10185, 100rspcedeq2vd 3569 . . . . . . . . . . . . . . . 16 (𝑛 = 4 → ∃𝑟𝑃 𝑛 = ((2 + 1) + 𝑟))
10285, 90, 101rspcedvd 3566 . . . . . . . . . . . . . . 15 (𝑛 = 4 → ∃𝑞𝑃𝑟𝑃 𝑛 = ((2 + 𝑞) + 𝑟))
10379, 84, 102rspcedvd 3566 . . . . . . . . . . . . . 14 (𝑛 = 4 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10473, 103syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ {4} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10572, 104sylbi 218 . . . . . . . . . . . 12 (𝑛 ∈ ((3 + 1)..^5) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10660, 105jaoi 852 . . . . . . . . . . 11 ((𝑛 ∈ {3} ∨ 𝑛 ∈ ((3 + 1)..^5)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
10729, 106sylbi 218 . . . . . . . . . 10 (𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
108 elsni 4489 . . . . . . . . . . 11 (𝑛 ∈ {5} → 𝑛 = 5)
109 3prm 15867 . . . . . . . . . . . . . . . 16 3 ∈ ℙ
110109olci 861 . . . . . . . . . . . . . . 15 (3 ∈ {1} ∨ 3 ∈ ℙ)
111 elun 4046 . . . . . . . . . . . . . . 15 (3 ∈ ({1} ∪ ℙ) ↔ (3 ∈ {1} ∨ 3 ∈ ℙ))
112110, 111mpbir 232 . . . . . . . . . . . . . 14 3 ∈ ({1} ∪ ℙ)
113112, 36eleqtrri 2882 . . . . . . . . . . . . 13 3 ∈ 𝑃
114113a1i 11 . . . . . . . . . . . 12 (𝑛 = 5 → 3 ∈ 𝑃)
115 oveq1 7023 . . . . . . . . . . . . . . . 16 (𝑝 = 3 → (𝑝 + 𝑞) = (3 + 𝑞))
116115oveq1d 7031 . . . . . . . . . . . . . . 15 (𝑝 = 3 → ((𝑝 + 𝑞) + 𝑟) = ((3 + 𝑞) + 𝑟))
117116eqeq2d 2805 . . . . . . . . . . . . . 14 (𝑝 = 3 → (𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 𝑞) + 𝑟)))
1181172rexbidv 3263 . . . . . . . . . . . . 13 (𝑝 = 3 → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟)))
119118adantl 482 . . . . . . . . . . . 12 ((𝑛 = 5 ∧ 𝑝 = 3) → (∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟)))
12037a1i 11 . . . . . . . . . . . . 13 (𝑛 = 5 → 1 ∈ 𝑃)
121 oveq2 7024 . . . . . . . . . . . . . . . . 17 (𝑞 = 1 → (3 + 𝑞) = (3 + 1))
122121oveq1d 7031 . . . . . . . . . . . . . . . 16 (𝑞 = 1 → ((3 + 𝑞) + 𝑟) = ((3 + 1) + 𝑟))
123122eqeq2d 2805 . . . . . . . . . . . . . . 15 (𝑞 = 1 → (𝑛 = ((3 + 𝑞) + 𝑟) ↔ 𝑛 = ((3 + 1) + 𝑟)))
124123rexbidv 3260 . . . . . . . . . . . . . 14 (𝑞 = 1 → (∃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟)))
125124adantl 482 . . . . . . . . . . . . 13 ((𝑛 = 5 ∧ 𝑞 = 1) → (∃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟)))
126 simpl 483 . . . . . . . . . . . . . . 15 ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = 5)
127 oveq2 7024 . . . . . . . . . . . . . . . . 17 (𝑟 = 1 → ((3 + 1) + 𝑟) = ((3 + 1) + 1))
12892oveq1i 7026 . . . . . . . . . . . . . . . . . 18 (4 + 1) = ((3 + 1) + 1)
12962, 128eqtri 2819 . . . . . . . . . . . . . . . . 17 5 = ((3 + 1) + 1)
130127, 129syl6reqr 2850 . . . . . . . . . . . . . . . 16 (𝑟 = 1 → 5 = ((3 + 1) + 𝑟))
131130adantl 482 . . . . . . . . . . . . . . 15 ((𝑛 = 5 ∧ 𝑟 = 1) → 5 = ((3 + 1) + 𝑟))
132126, 131eqtrd 2831 . . . . . . . . . . . . . 14 ((𝑛 = 5 ∧ 𝑟 = 1) → 𝑛 = ((3 + 1) + 𝑟))
133120, 132rspcedeq2vd 3569 . . . . . . . . . . . . 13 (𝑛 = 5 → ∃𝑟𝑃 𝑛 = ((3 + 1) + 𝑟))
134120, 125, 133rspcedvd 3566 . . . . . . . . . . . 12 (𝑛 = 5 → ∃𝑞𝑃𝑟𝑃 𝑛 = ((3 + 𝑞) + 𝑟))
135114, 119, 134rspcedvd 3566 . . . . . . . . . . 11 (𝑛 = 5 → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
136108, 135syl 17 . . . . . . . . . 10 (𝑛 ∈ {5} → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
137107, 136jaoi 852 . . . . . . . . 9 ((𝑛 ∈ ({3} ∪ ((3 + 1)..^5)) ∨ 𝑛 ∈ {5}) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
13828, 137sylbi 218 . . . . . . . 8 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
139138a1d 25 . . . . . . 7 (𝑛 ∈ (({3} ∪ ((3 + 1)..^5)) ∪ {5}) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
14027, 139sylbi 218 . . . . . 6 (𝑛 ∈ (3...(6 − 1)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
141 sbgoldbm 43431 . . . . . . . 8 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
142 rspa 3173 . . . . . . . . . 10 ((∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))
143 ssun2 4070 . . . . . . . . . . . . 13 ℙ ⊆ ({1} ∪ ℙ)
144143, 36sseqtr4i 3925 . . . . . . . . . . . 12 ℙ ⊆ 𝑃
145 rexss 3959 . . . . . . . . . . . 12 (ℙ ⊆ 𝑃 → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
146144, 145ax-mp 5 . . . . . . . . . . 11 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
147 rexss 3959 . . . . . . . . . . . . . . 15 (ℙ ⊆ 𝑃 → (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
148144, 147ax-mp 5 . . . . . . . . . . . . . 14 (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
149 rexss 3959 . . . . . . . . . . . . . . . . . 18 (ℙ ⊆ 𝑃 → (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟))))
150144, 149ax-mp 5 . . . . . . . . . . . . . . . . 17 (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ↔ ∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
151 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → 𝑛 = ((𝑝 + 𝑞) + 𝑟))
152151reximi 3207 . . . . . . . . . . . . . . . . 17 (∃𝑟𝑃 (𝑟 ∈ ℙ ∧ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
153150, 152sylbi 218 . . . . . . . . . . . . . . . 16 (∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
154153adantl 482 . . . . . . . . . . . . . . 15 ((𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
155154reximi 3207 . . . . . . . . . . . . . 14 (∃𝑞𝑃 (𝑞 ∈ ℙ ∧ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
156148, 155sylbi 218 . . . . . . . . . . . . 13 (∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
157156adantl 482 . . . . . . . . . . . 12 ((𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
158157reximi 3207 . . . . . . . . . . 11 (∃𝑝𝑃 (𝑝 ∈ ℙ ∧ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
159146, 158sylbi 218 . . . . . . . . . 10 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
160142, 159syl 17 . . . . . . . . 9 ((∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) ∧ 𝑛 ∈ (ℤ‘6)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
161160ex 413 . . . . . . . 8 (∀𝑛 ∈ (ℤ‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → (𝑛 ∈ (ℤ‘6) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
162141, 161syl 17 . . . . . . 7 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ (ℤ‘6) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
163162com12 32 . . . . . 6 (𝑛 ∈ (ℤ‘6) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
164140, 163jaoi 852 . . . . 5 ((𝑛 ∈ (3...(6 − 1)) ∨ 𝑛 ∈ (ℤ‘6)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
16514, 164sylbi 218 . . . 4 (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
166165com12 32 . . 3 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ ((3...(6 − 1)) ∪ (ℤ‘6)) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
16713, 166syl5bi 243 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑛 ∈ (ℤ‘3) → ∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)))
1681, 167ralrimi 3183 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘3)∃𝑝𝑃𝑞𝑃𝑟𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wral 3105  wrex 3106  cun 3857  wss 3859  {csn 4472   class class class wbr 4962  cfv 6225  (class class class)co 7016  1c1 10384   + caddc 10386   < clt 10521  cle 10522  cmin 10717  2c2 11540  3c3 11541  4c4 11542  5c5 11543  6c6 11544  cz 11829  cuz 12093  ...cfz 12742  ..^cfzo 12883  cprime 15844   Even ceven 43271   GoldbachEven cgbe 43392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-dvds 15441  df-prm 15845  df-even 43273  df-odd 43274  df-gbe 43395  df-gbow 43396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator