MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfo Structured version   Visualization version   GIF version

Theorem symgextfo 19440
Description: The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfo ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁onto𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfo
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgext.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . 3 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf 19435 . 2 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
4 eqid 2737 . . . . . . . . . . 11 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
54, 1symgbasf1o 19392 . . . . . . . . . 10 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))
6 f1ofo 6855 . . . . . . . . . 10 (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
75, 6syl 17 . . . . . . . . 9 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
87adantl 481 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
9 dffo3 7122 . . . . . . . 8 (𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
108, 9sylib 218 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1110simprd 495 . . . . . 6 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖))
121, 2symgextfv 19436 . . . . . . . . . 10 ((𝐾𝑁𝑍𝑆) → (𝑖 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑖) = (𝑍𝑖)))
1312imp 406 . . . . . . . . 9 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑖) = (𝑍𝑖))
1413eqeq2d 2748 . . . . . . . 8 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝑘 = (𝐸𝑖) ↔ 𝑘 = (𝑍𝑖)))
1514rexbidva 3177 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) ↔ ∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1615ralbidv 3178 . . . . . 6 ((𝐾𝑁𝑍𝑆) → (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1711, 16mpbird 257 . . . . 5 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖))
18 difssd 4137 . . . . . . 7 (𝑘 ∈ (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
19 ssrexv 4053 . . . . . . 7 ((𝑁 ∖ {𝐾}) ⊆ 𝑁 → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∃𝑖𝑁 𝑘 = (𝐸𝑖)))
2018, 19syl 17 . . . . . 6 (𝑘 ∈ (𝑁 ∖ {𝐾}) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∃𝑖𝑁 𝑘 = (𝐸𝑖)))
2120ralimia 3080 . . . . 5 (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
2217, 21syl 17 . . . 4 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
23 simpl 482 . . . . 5 ((𝐾𝑁𝑍𝑆) → 𝐾𝑁)
241, 2symgextfve 19437 . . . . . . . 8 (𝐾𝑁 → (𝑖 = 𝐾 → (𝐸𝑖) = 𝐾))
2524adantr 480 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (𝑖 = 𝐾 → (𝐸𝑖) = 𝐾))
2625imp 406 . . . . . 6 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 = 𝐾) → (𝐸𝑖) = 𝐾)
2726eqcomd 2743 . . . . 5 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 = 𝐾) → 𝐾 = (𝐸𝑖))
2823, 27rspcedeq2vd 3630 . . . 4 ((𝐾𝑁𝑍𝑆) → ∃𝑖𝑁 𝐾 = (𝐸𝑖))
29 eqeq1 2741 . . . . . . 7 (𝑘 = 𝐾 → (𝑘 = (𝐸𝑖) ↔ 𝐾 = (𝐸𝑖)))
3029rexbidv 3179 . . . . . 6 (𝑘 = 𝐾 → (∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∃𝑖𝑁 𝐾 = (𝐸𝑖)))
3130ralunsn 4894 . . . . 5 (𝐾𝑁 → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ∧ ∃𝑖𝑁 𝐾 = (𝐸𝑖))))
3231adantr 480 . . . 4 ((𝐾𝑁𝑍𝑆) → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ∧ ∃𝑖𝑁 𝐾 = (𝐸𝑖))))
3322, 28, 32mpbir2and 713 . . 3 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
34 difsnid 4810 . . . . . 6 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
3534eqcomd 2743 . . . . 5 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
3635raleqdv 3326 . . . 4 (𝐾𝑁 → (∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖)))
3736adantr 480 . . 3 ((𝐾𝑁𝑍𝑆) → (∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖)))
3833, 37mpbird 257 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖))
39 dffo3 7122 . 2 (𝐸:𝑁onto𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖)))
403, 38, 39sylanbrc 583 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁onto𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cdif 3948  cun 3949  wss 3951  ifcif 4525  {csn 4626  cmpt 5225  wf 6557  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  Basecbs 17247  SymGrpcsymg 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-efmnd 18882  df-symg 19387
This theorem is referenced by:  symgextf1o  19441
  Copyright terms: Public domain W3C validator