| Step | Hyp | Ref
| Expression |
| 1 | | symgext.s |
. . 3
⊢ 𝑆 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| 2 | | symgext.e |
. . 3
⊢ 𝐸 = (𝑥 ∈ 𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍‘𝑥))) |
| 3 | 1, 2 | symgextf 19398 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁⟶𝑁) |
| 4 | | eqid 2735 |
. . . . . . . . . . 11
⊢
(SymGrp‘(𝑁
∖ {𝐾})) =
(SymGrp‘(𝑁 ∖
{𝐾})) |
| 5 | 4, 1 | symgbasf1o 19356 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑆 → 𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾})) |
| 6 | | f1ofo 6825 |
. . . . . . . . . 10
⊢ (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾})) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝑍 ∈ 𝑆 → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾})) |
| 8 | 7 | adantl 481 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾})) |
| 9 | | dffo3 7092 |
. . . . . . . 8
⊢ (𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍‘𝑖))) |
| 10 | 8, 9 | sylib 218 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍‘𝑖))) |
| 11 | 10 | simprd 495 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍‘𝑖)) |
| 12 | 1, 2 | symgextfv 19399 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑖 ∈ (𝑁 ∖ {𝐾}) → (𝐸‘𝑖) = (𝑍‘𝑖))) |
| 13 | 12 | imp 406 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝐸‘𝑖) = (𝑍‘𝑖)) |
| 14 | 13 | eqeq2d 2746 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝑘 = (𝐸‘𝑖) ↔ 𝑘 = (𝑍‘𝑖))) |
| 15 | 14 | rexbidva 3162 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸‘𝑖) ↔ ∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍‘𝑖))) |
| 16 | 15 | ralbidv 3163 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸‘𝑖) ↔ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍‘𝑖))) |
| 17 | 11, 16 | mpbird 257 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸‘𝑖)) |
| 18 | | difssd 4112 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) |
| 19 | | ssrexv 4028 |
. . . . . . 7
⊢ ((𝑁 ∖ {𝐾}) ⊆ 𝑁 → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸‘𝑖) → ∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖))) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ (𝑁 ∖ {𝐾}) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸‘𝑖) → ∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖))) |
| 21 | 20 | ralimia 3070 |
. . . . 5
⊢
(∀𝑘 ∈
(𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸‘𝑖) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖)) |
| 22 | 17, 21 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖)) |
| 23 | | simpl 482 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐾 ∈ 𝑁) |
| 24 | 1, 2 | symgextfve 19400 |
. . . . . . . 8
⊢ (𝐾 ∈ 𝑁 → (𝑖 = 𝐾 → (𝐸‘𝑖) = 𝐾)) |
| 25 | 24 | adantr 480 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (𝑖 = 𝐾 → (𝐸‘𝑖) = 𝐾)) |
| 26 | 25 | imp 406 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑖 = 𝐾) → (𝐸‘𝑖) = 𝐾) |
| 27 | 26 | eqcomd 2741 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) ∧ 𝑖 = 𝐾) → 𝐾 = (𝐸‘𝑖)) |
| 28 | 23, 27 | rspcedeq2vd 3609 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∃𝑖 ∈ 𝑁 𝐾 = (𝐸‘𝑖)) |
| 29 | | eqeq1 2739 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑘 = (𝐸‘𝑖) ↔ 𝐾 = (𝐸‘𝑖))) |
| 30 | 29 | rexbidv 3164 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖) ↔ ∃𝑖 ∈ 𝑁 𝐾 = (𝐸‘𝑖))) |
| 31 | 30 | ralunsn 4870 |
. . . . 5
⊢ (𝐾 ∈ 𝑁 → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖) ∧ ∃𝑖 ∈ 𝑁 𝐾 = (𝐸‘𝑖)))) |
| 32 | 31 | adantr 480 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖) ∧ ∃𝑖 ∈ 𝑁 𝐾 = (𝐸‘𝑖)))) |
| 33 | 22, 28, 32 | mpbir2and 713 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖)) |
| 34 | | difsnid 4786 |
. . . . . 6
⊢ (𝐾 ∈ 𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁) |
| 35 | 34 | eqcomd 2741 |
. . . . 5
⊢ (𝐾 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾})) |
| 36 | 35 | raleqdv 3305 |
. . . 4
⊢ (𝐾 ∈ 𝑁 → (∀𝑘 ∈ 𝑁 ∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖))) |
| 37 | 36 | adantr 480 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → (∀𝑘 ∈ 𝑁 ∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖))) |
| 38 | 33, 37 | mpbird 257 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → ∀𝑘 ∈ 𝑁 ∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖)) |
| 39 | | dffo3 7092 |
. 2
⊢ (𝐸:𝑁–onto→𝑁 ↔ (𝐸:𝑁⟶𝑁 ∧ ∀𝑘 ∈ 𝑁 ∃𝑖 ∈ 𝑁 𝑘 = (𝐸‘𝑖))) |
| 40 | 3, 38, 39 | sylanbrc 583 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑍 ∈ 𝑆) → 𝐸:𝑁–onto→𝑁) |