MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgextfo Structured version   Visualization version   GIF version

Theorem symgextfo 19403
Description: The extension of a permutation, fixing the additional element, is an onto function. (Contributed by AV, 7-Jan-2019.)
Hypotheses
Ref Expression
symgext.s 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
symgext.e 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
Assertion
Ref Expression
symgextfo ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁onto𝑁)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑁   𝑥,𝑆   𝑥,𝑍
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem symgextfo
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgext.s . . 3 𝑆 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
2 symgext.e . . 3 𝐸 = (𝑥𝑁 ↦ if(𝑥 = 𝐾, 𝐾, (𝑍𝑥)))
31, 2symgextf 19398 . 2 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁𝑁)
4 eqid 2735 . . . . . . . . . . 11 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
54, 1symgbasf1o 19356 . . . . . . . . . 10 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}))
6 f1ofo 6825 . . . . . . . . . 10 (𝑍:(𝑁 ∖ {𝐾})–1-1-onto→(𝑁 ∖ {𝐾}) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
75, 6syl 17 . . . . . . . . 9 (𝑍𝑆𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
87adantl 481 . . . . . . . 8 ((𝐾𝑁𝑍𝑆) → 𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}))
9 dffo3 7092 . . . . . . . 8 (𝑍:(𝑁 ∖ {𝐾})–onto→(𝑁 ∖ {𝐾}) ↔ (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
108, 9sylib 218 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (𝑍:(𝑁 ∖ {𝐾})⟶(𝑁 ∖ {𝐾}) ∧ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1110simprd 495 . . . . . 6 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖))
121, 2symgextfv 19399 . . . . . . . . . 10 ((𝐾𝑁𝑍𝑆) → (𝑖 ∈ (𝑁 ∖ {𝐾}) → (𝐸𝑖) = (𝑍𝑖)))
1312imp 406 . . . . . . . . 9 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝐸𝑖) = (𝑍𝑖))
1413eqeq2d 2746 . . . . . . . 8 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 ∈ (𝑁 ∖ {𝐾})) → (𝑘 = (𝐸𝑖) ↔ 𝑘 = (𝑍𝑖)))
1514rexbidva 3162 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) ↔ ∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1615ralbidv 3163 . . . . . 6 ((𝐾𝑁𝑍𝑆) → (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝑍𝑖)))
1711, 16mpbird 257 . . . . 5 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖))
18 difssd 4112 . . . . . . 7 (𝑘 ∈ (𝑁 ∖ {𝐾}) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
19 ssrexv 4028 . . . . . . 7 ((𝑁 ∖ {𝐾}) ⊆ 𝑁 → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∃𝑖𝑁 𝑘 = (𝐸𝑖)))
2018, 19syl 17 . . . . . 6 (𝑘 ∈ (𝑁 ∖ {𝐾}) → (∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∃𝑖𝑁 𝑘 = (𝐸𝑖)))
2120ralimia 3070 . . . . 5 (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖 ∈ (𝑁 ∖ {𝐾})𝑘 = (𝐸𝑖) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
2217, 21syl 17 . . . 4 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
23 simpl 482 . . . . 5 ((𝐾𝑁𝑍𝑆) → 𝐾𝑁)
241, 2symgextfve 19400 . . . . . . . 8 (𝐾𝑁 → (𝑖 = 𝐾 → (𝐸𝑖) = 𝐾))
2524adantr 480 . . . . . . 7 ((𝐾𝑁𝑍𝑆) → (𝑖 = 𝐾 → (𝐸𝑖) = 𝐾))
2625imp 406 . . . . . 6 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 = 𝐾) → (𝐸𝑖) = 𝐾)
2726eqcomd 2741 . . . . 5 (((𝐾𝑁𝑍𝑆) ∧ 𝑖 = 𝐾) → 𝐾 = (𝐸𝑖))
2823, 27rspcedeq2vd 3609 . . . 4 ((𝐾𝑁𝑍𝑆) → ∃𝑖𝑁 𝐾 = (𝐸𝑖))
29 eqeq1 2739 . . . . . . 7 (𝑘 = 𝐾 → (𝑘 = (𝐸𝑖) ↔ 𝐾 = (𝐸𝑖)))
3029rexbidv 3164 . . . . . 6 (𝑘 = 𝐾 → (∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∃𝑖𝑁 𝐾 = (𝐸𝑖)))
3130ralunsn 4870 . . . . 5 (𝐾𝑁 → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ∧ ∃𝑖𝑁 𝐾 = (𝐸𝑖))))
3231adantr 480 . . . 4 ((𝐾𝑁𝑍𝑆) → (∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ↔ (∀𝑘 ∈ (𝑁 ∖ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖) ∧ ∃𝑖𝑁 𝐾 = (𝐸𝑖))))
3322, 28, 32mpbir2and 713 . . 3 ((𝐾𝑁𝑍𝑆) → ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖))
34 difsnid 4786 . . . . . 6 (𝐾𝑁 → ((𝑁 ∖ {𝐾}) ∪ {𝐾}) = 𝑁)
3534eqcomd 2741 . . . . 5 (𝐾𝑁𝑁 = ((𝑁 ∖ {𝐾}) ∪ {𝐾}))
3635raleqdv 3305 . . . 4 (𝐾𝑁 → (∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖)))
3736adantr 480 . . 3 ((𝐾𝑁𝑍𝑆) → (∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖) ↔ ∀𝑘 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾})∃𝑖𝑁 𝑘 = (𝐸𝑖)))
3833, 37mpbird 257 . 2 ((𝐾𝑁𝑍𝑆) → ∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖))
39 dffo3 7092 . 2 (𝐸:𝑁onto𝑁 ↔ (𝐸:𝑁𝑁 ∧ ∀𝑘𝑁𝑖𝑁 𝑘 = (𝐸𝑖)))
403, 38, 39sylanbrc 583 1 ((𝐾𝑁𝑍𝑆) → 𝐸:𝑁onto𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cdif 3923  cun 3924  wss 3926  ifcif 4500  {csn 4601  cmpt 5201  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  Basecbs 17228  SymGrpcsymg 19350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-tset 17290  df-efmnd 18847  df-symg 19351
This theorem is referenced by:  symgextf1o  19404
  Copyright terms: Public domain W3C validator