Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbblem Structured version   Visualization version   GIF version

Theorem mogoldbblem 44177
Description: Lemma for mogoldbb 44242. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbblem (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
Distinct variable groups:   𝑁,𝑝,𝑞   𝑃,𝑝,𝑞   𝑄,𝑝,𝑞   𝑅,𝑝,𝑞

Proof of Theorem mogoldbblem
StepHypRef Expression
1 2evenALTV 44149 . . . . 5 2 ∈ Even
2 epee 44162 . . . . 5 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 + 2) ∈ Even )
31, 2mpan2 690 . . . 4 (𝑁 ∈ Even → (𝑁 + 2) ∈ Even )
433ad2ant2 1131 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) ∈ Even )
5 simp1 1133 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ))
6 simp3 1135 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅))
7 even3prm2 44176 . . 3 (((𝑁 + 2) ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
84, 5, 6, 7syl3anc 1368 . 2 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
9 oveq1 7147 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 + 𝑄) = (2 + 𝑄))
109oveq1d 7155 . . . . . . . . . 10 (𝑃 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((2 + 𝑄) + 𝑅))
1110eqeq2d 2833 . . . . . . . . 9 (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((2 + 𝑄) + 𝑅)))
12 2cnd 11703 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈ ℂ)
13 prmz 16008 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
1413zcnd 12076 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℂ)
1514adantr 484 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑄 ∈ ℂ)
16 prmz 16008 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℙ → 𝑅 ∈ ℤ)
1716zcnd 12076 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℙ → 𝑅 ∈ ℂ)
1817adantl 485 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
19 simp1 1133 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
20 addcl 10608 . . . . . . . . . . . . . . . . 17 ((𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑄 + 𝑅) ∈ ℂ)
21203adant1 1127 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑄 + 𝑅) ∈ ℂ)
22 addass 10613 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((2 + 𝑄) + 𝑅) = (2 + (𝑄 + 𝑅)))
2319, 21, 22comraddd 10843 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((2 + 𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2))
2412, 15, 18, 23syl3anc 1368 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((2 + 𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2))
2524eqeq2d 2833 . . . . . . . . . . . . 13 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2)))
2625adantr 484 . . . . . . . . . . . 12 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2)))
27 evenz 44087 . . . . . . . . . . . . . . 15 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
2827zcnd 12076 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
2928adantl 485 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
30 zaddcl 12010 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑄 + 𝑅) ∈ ℤ)
3113, 16, 30syl2an 598 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℤ)
3231zcnd 12076 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℂ)
3332adantr 484 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑄 + 𝑅) ∈ ℂ)
34 2cnd 11703 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
3529, 33, 34addcan2d 10833 . . . . . . . . . . . 12 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑄 + 𝑅) + 2) ↔ 𝑁 = (𝑄 + 𝑅)))
3626, 35bitrd 282 . . . . . . . . . . 11 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ 𝑁 = (𝑄 + 𝑅)))
37 simpll 766 . . . . . . . . . . . . . 14 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑄 ∈ ℙ)
38 oveq1 7147 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑄 → (𝑝 + 𝑞) = (𝑄 + 𝑞))
3938eqeq2d 2833 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑄 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑄 + 𝑞)))
4039rexbidv 3283 . . . . . . . . . . . . . . 15 (𝑝 = 𝑄 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞)))
4140adantl 485 . . . . . . . . . . . . . 14 ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑝 = 𝑄) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞)))
42 simplr 768 . . . . . . . . . . . . . . 15 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑅 ∈ ℙ)
43 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑁 = (𝑄 + 𝑅))
44 oveq2 7148 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑅 → (𝑄 + 𝑞) = (𝑄 + 𝑅))
4544eqcomd 2828 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑅 → (𝑄 + 𝑅) = (𝑄 + 𝑞))
4643, 45sylan9eq 2877 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑄 + 𝑞))
4742, 46rspcedeq2vd 3605 . . . . . . . . . . . . . 14 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞))
4837, 41, 47rspcedvd 3601 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
4948ex 416 . . . . . . . . . . . 12 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5049adantr 484 . . . . . . . . . . 11 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5136, 50sylbid 243 . . . . . . . . . 10 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5251com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5311, 52syl6bi 256 . . . . . . . 8 (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
5453com13 88 . . . . . . 7 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
5554ex 416 . . . . . 6 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
56553adant1 1127 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
57563imp 1108 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5857com12 32 . . 3 (𝑃 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
59 oveq2 7148 . . . . . . . . . . 11 (𝑄 = 2 → (𝑃 + 𝑄) = (𝑃 + 2))
6059oveq1d 7155 . . . . . . . . . 10 (𝑄 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 2) + 𝑅))
6160eqeq2d 2833 . . . . . . . . 9 (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 2) + 𝑅)))
62 prmz 16008 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6362zcnd 12076 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
6463adantr 484 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑃 ∈ ℂ)
65 2cnd 11703 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈ ℂ)
6617adantl 485 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
6764, 65, 663jca 1125 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ))
6867adantr 484 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ))
69 add32 10847 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((𝑃 + 2) + 𝑅) = ((𝑃 + 𝑅) + 2))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑃 + 2) + 𝑅) = ((𝑃 + 𝑅) + 2))
7170eqeq2d 2833 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑅) + 2)))
7228adantl 485 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
73 zaddcl 12010 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑃 + 𝑅) ∈ ℤ)
7462, 16, 73syl2an 598 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℤ)
7574zcnd 12076 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℂ)
7675adantr 484 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑅) ∈ ℂ)
77 2cnd 11703 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
7872, 76, 77addcan2d 10833 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑅) + 2) ↔ 𝑁 = (𝑃 + 𝑅)))
7971, 78bitrd 282 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ 𝑁 = (𝑃 + 𝑅)))
80 simpll 766 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑃 ∈ ℙ)
81 oveq1 7147 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑃 → (𝑝 + 𝑞) = (𝑃 + 𝑞))
8281eqeq2d 2833 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑃 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑃 + 𝑞)))
8382rexbidv 3283 . . . . . . . . . . . . . . 15 (𝑝 = 𝑃 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
8483adantl 485 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
85 simplr 768 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑅 ∈ ℙ)
86 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑁 = (𝑃 + 𝑅))
87 oveq2 7148 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑅 → (𝑃 + 𝑞) = (𝑃 + 𝑅))
8887eqcomd 2828 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑅 → (𝑃 + 𝑅) = (𝑃 + 𝑞))
8986, 88sylan9eq 2877 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑃 + 𝑞))
9085, 89rspcedeq2vd 3605 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))
9180, 84, 90rspcedvd 3601 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
9291ex 416 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9392adantr 484 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9479, 93sylbid 243 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9594com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9661, 95syl6bi 256 . . . . . . . 8 (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
9796com13 88 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
9897ex 416 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
99983adant2 1128 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
100993imp 1108 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
101100com12 32 . . 3 (𝑄 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
102 oveq2 7148 . . . . . . . . . 10 (𝑅 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 𝑄) + 2))
103102eqeq2d 2833 . . . . . . . . 9 (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑄) + 2)))
10428adantl 485 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
105 zaddcl 12010 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ)
10662, 13, 105syl2an 598 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ)
107106zcnd 12076 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
108107adantr 484 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑄) ∈ ℂ)
109 2cnd 11703 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
110104, 108, 109addcan2d 10833 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) ↔ 𝑁 = (𝑃 + 𝑄)))
111 simpll 766 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ ℙ)
11283adantl 485 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
113 simplr 768 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ ℙ)
114 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑁 = (𝑃 + 𝑄))
115 oveq2 7148 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑄 → (𝑃 + 𝑞) = (𝑃 + 𝑄))
116115eqcomd 2828 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑄 → (𝑃 + 𝑄) = (𝑃 + 𝑞))
117114, 116sylan9eq 2877 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑞 = 𝑄) → 𝑁 = (𝑃 + 𝑞))
118113, 117rspcedeq2vd 3605 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))
119111, 112, 118rspcedvd 3601 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
120119ex 416 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
121120adantr 484 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
122110, 121sylbid 243 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
123122com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
124103, 123syl6bi 256 . . . . . . . 8 (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
125124com13 88 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
126125ex 416 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
1271263adant3 1129 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
1281273imp 1108 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
129128com12 32 . . 3 (𝑅 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
13058, 101, 1293jaoi 1424 . 2 ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
1318, 130mpcom 38 1 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2114  wrex 3131  (class class class)co 7140  cc 10524   + caddc 10529  2c2 11680  cz 11969  cprime 16004   Even ceven 44081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-dvds 15599  df-prm 16005  df-even 44083  df-odd 44084
This theorem is referenced by:  mogoldbb  44242
  Copyright terms: Public domain W3C validator