Proof of Theorem mogoldbblem
Step | Hyp | Ref
| Expression |
1 | | 2evenALTV 45032 |
. . . . 5
⊢ 2 ∈
Even |
2 | | epee 45045 |
. . . . 5
⊢ ((𝑁 ∈ Even ∧ 2 ∈ Even
) → (𝑁 + 2) ∈
Even ) |
3 | 1, 2 | mpan2 687 |
. . . 4
⊢ (𝑁 ∈ Even → (𝑁 + 2) ∈ Even
) |
4 | 3 | 3ad2ant2 1132 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) ∈ Even ) |
5 | | simp1 1134 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) |
6 | | simp3 1136 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) |
7 | | even3prm2 45059 |
. . 3
⊢ (((𝑁 + 2) ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) |
8 | 4, 5, 6, 7 | syl3anc 1369 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) |
9 | | oveq1 7262 |
. . . . . . . . . . 11
⊢ (𝑃 = 2 → (𝑃 + 𝑄) = (2 + 𝑄)) |
10 | 9 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑃 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((2 + 𝑄) + 𝑅)) |
11 | 10 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((2 + 𝑄) + 𝑅))) |
12 | | 2cnd 11981 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈
ℂ) |
13 | | prmz 16308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
14 | 13 | zcnd 12356 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℂ) |
15 | 14 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑄 ∈
ℂ) |
16 | | prmz 16308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ ℙ → 𝑅 ∈
ℤ) |
17 | 16 | zcnd 12356 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ ℙ → 𝑅 ∈
ℂ) |
18 | 17 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈
ℂ) |
19 | | simp1 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℂ ∧ 𝑄
∈ ℂ ∧ 𝑅
∈ ℂ) → 2 ∈ ℂ) |
20 | | addcl 10884 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑄 + 𝑅) ∈ ℂ) |
21 | 20 | 3adant1 1128 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℂ ∧ 𝑄
∈ ℂ ∧ 𝑅
∈ ℂ) → (𝑄 +
𝑅) ∈
ℂ) |
22 | | addass 10889 |
. . . . . . . . . . . . . . . 16
⊢ ((2
∈ ℂ ∧ 𝑄
∈ ℂ ∧ 𝑅
∈ ℂ) → ((2 + 𝑄) + 𝑅) = (2 + (𝑄 + 𝑅))) |
23 | 19, 21, 22 | comraddd 11119 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℂ ∧ 𝑄
∈ ℂ ∧ 𝑅
∈ ℂ) → ((2 + 𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2)) |
24 | 12, 15, 18, 23 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((2 +
𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2)) |
25 | 24 | eqeq2d 2749 |
. . . . . . . . . . . . 13
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2))) |
26 | 25 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2))) |
27 | | evenz 44970 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ Even → 𝑁 ∈
ℤ) |
28 | 27 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ Even → 𝑁 ∈
ℂ) |
29 | 28 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈
ℂ) |
30 | | zaddcl 12290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑄 + 𝑅) ∈ ℤ) |
31 | 13, 16, 30 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℤ) |
32 | 31 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℂ) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑄 + 𝑅) ∈ ℂ) |
34 | | 2cnd 11981 |
. . . . . . . . . . . . 13
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈
ℂ) |
35 | 29, 33, 34 | addcan2d 11109 |
. . . . . . . . . . . 12
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑄 + 𝑅) + 2) ↔ 𝑁 = (𝑄 + 𝑅))) |
36 | 26, 35 | bitrd 278 |
. . . . . . . . . . 11
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ 𝑁 = (𝑄 + 𝑅))) |
37 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑄 ∈ ℙ) |
38 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑄 → (𝑝 + 𝑞) = (𝑄 + 𝑞)) |
39 | 38 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑄 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑄 + 𝑞))) |
40 | 39 | rexbidv 3225 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑄 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞))) |
41 | 40 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑝 = 𝑄) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞))) |
42 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑅 ∈ ℙ) |
43 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑁 = (𝑄 + 𝑅)) |
44 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 𝑅 → (𝑄 + 𝑞) = (𝑄 + 𝑅)) |
45 | 44 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑅 → (𝑄 + 𝑅) = (𝑄 + 𝑞)) |
46 | 43, 45 | sylan9eq 2799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑄 + 𝑞)) |
47 | 42, 46 | rspcedeq2vd 3559 |
. . . . . . . . . . . . . 14
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞)) |
48 | 37, 41, 47 | rspcedvd 3555 |
. . . . . . . . . . . . 13
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) |
49 | 48 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
50 | 49 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
51 | 36, 50 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
52 | 51 | com12 32 |
. . . . . . . . 9
⊢ ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
53 | 11, 52 | syl6bi 252 |
. . . . . . . 8
⊢ (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))) |
54 | 53 | com13 88 |
. . . . . . 7
⊢ (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))) |
55 | 54 | ex 412 |
. . . . . 6
⊢ ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))) |
56 | 55 | 3adant1 1128 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))) |
57 | 56 | 3imp 1109 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
58 | 57 | com12 32 |
. . 3
⊢ (𝑃 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
59 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑄 = 2 → (𝑃 + 𝑄) = (𝑃 + 2)) |
60 | 59 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑄 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 2) + 𝑅)) |
61 | 60 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 2) + 𝑅))) |
62 | | prmz 16308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
63 | 62 | zcnd 12356 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℂ) |
64 | 63 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑃 ∈
ℂ) |
65 | | 2cnd 11981 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈
ℂ) |
66 | 17 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈
ℂ) |
67 | 64, 65, 66 | 3jca 1126 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℂ ∧ 2 ∈
ℂ ∧ 𝑅 ∈
ℂ)) |
68 | 67 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 ∈ ℂ ∧ 2 ∈
ℂ ∧ 𝑅 ∈
ℂ)) |
69 | | add32 11123 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℂ ∧ 2 ∈
ℂ ∧ 𝑅 ∈
ℂ) → ((𝑃 + 2) +
𝑅) = ((𝑃 + 𝑅) + 2)) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑃 + 2) + 𝑅) = ((𝑃 + 𝑅) + 2)) |
71 | 70 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑅) + 2))) |
72 | 28 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈
ℂ) |
73 | | zaddcl 12290 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑃 + 𝑅) ∈ ℤ) |
74 | 62, 16, 73 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℤ) |
75 | 74 | zcnd 12356 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℂ) |
76 | 75 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑅) ∈ ℂ) |
77 | | 2cnd 11981 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈
ℂ) |
78 | 72, 76, 77 | addcan2d 11109 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑅) + 2) ↔ 𝑁 = (𝑃 + 𝑅))) |
79 | 71, 78 | bitrd 278 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ 𝑁 = (𝑃 + 𝑅))) |
80 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑃 ∈ ℙ) |
81 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑃 → (𝑝 + 𝑞) = (𝑃 + 𝑞)) |
82 | 81 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑃 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑃 + 𝑞))) |
83 | 82 | rexbidv 3225 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑃 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))) |
84 | 83 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))) |
85 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑅 ∈ ℙ) |
86 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑁 = (𝑃 + 𝑅)) |
87 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 𝑅 → (𝑃 + 𝑞) = (𝑃 + 𝑅)) |
88 | 87 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑅 → (𝑃 + 𝑅) = (𝑃 + 𝑞)) |
89 | 86, 88 | sylan9eq 2799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑃 + 𝑞)) |
90 | 85, 89 | rspcedeq2vd 3559 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)) |
91 | 80, 84, 90 | rspcedvd 3555 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) |
92 | 91 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
93 | 92 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
94 | 79, 93 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
95 | 94 | com12 32 |
. . . . . . . . 9
⊢ ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
96 | 61, 95 | syl6bi 252 |
. . . . . . . 8
⊢ (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))) |
97 | 96 | com13 88 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))) |
98 | 97 | ex 412 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))) |
99 | 98 | 3adant2 1129 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))) |
100 | 99 | 3imp 1109 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
101 | 100 | com12 32 |
. . 3
⊢ (𝑄 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
102 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑅 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 𝑄) + 2)) |
103 | 102 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑄) + 2))) |
104 | 28 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈
ℂ) |
105 | | zaddcl 12290 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ) |
106 | 62, 13, 105 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ) |
107 | 106 | zcnd 12356 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ) |
108 | 107 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑄) ∈ ℂ) |
109 | | 2cnd 11981 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈
ℂ) |
110 | 104, 108,
109 | addcan2d 11109 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) ↔ 𝑁 = (𝑃 + 𝑄))) |
111 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ ℙ) |
112 | 83 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))) |
113 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ ℙ) |
114 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑁 = (𝑃 + 𝑄)) |
115 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 = 𝑄 → (𝑃 + 𝑞) = (𝑃 + 𝑄)) |
116 | 115 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑄 → (𝑃 + 𝑄) = (𝑃 + 𝑞)) |
117 | 114, 116 | sylan9eq 2799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑞 = 𝑄) → 𝑁 = (𝑃 + 𝑞)) |
118 | 113, 117 | rspcedeq2vd 3559 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)) |
119 | 111, 112,
118 | rspcedvd 3555 |
. . . . . . . . . . . . 13
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) |
120 | 119 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
121 | 120 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
122 | 110, 121 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
123 | 122 | com12 32 |
. . . . . . . . 9
⊢ ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
124 | 103, 123 | syl6bi 252 |
. . . . . . . 8
⊢ (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))) |
125 | 124 | com13 88 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))) |
126 | 125 | ex 412 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))) |
127 | 126 | 3adant3 1130 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))) |
128 | 127 | 3imp 1109 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
129 | 128 | com12 32 |
. . 3
⊢ (𝑅 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
130 | 58, 101, 129 | 3jaoi 1425 |
. 2
⊢ ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))) |
131 | 8, 130 | mpcom 38 |
1
⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) |