Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbblem Structured version   Visualization version   GIF version

Theorem mogoldbblem 45060
Description: Lemma for mogoldbb 45125. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbblem (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
Distinct variable groups:   𝑁,𝑝,𝑞   𝑃,𝑝,𝑞   𝑄,𝑝,𝑞   𝑅,𝑝,𝑞

Proof of Theorem mogoldbblem
StepHypRef Expression
1 2evenALTV 45032 . . . . 5 2 ∈ Even
2 epee 45045 . . . . 5 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 + 2) ∈ Even )
31, 2mpan2 687 . . . 4 (𝑁 ∈ Even → (𝑁 + 2) ∈ Even )
433ad2ant2 1132 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) ∈ Even )
5 simp1 1134 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ))
6 simp3 1136 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅))
7 even3prm2 45059 . . 3 (((𝑁 + 2) ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
84, 5, 6, 7syl3anc 1369 . 2 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
9 oveq1 7262 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 + 𝑄) = (2 + 𝑄))
109oveq1d 7270 . . . . . . . . . 10 (𝑃 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((2 + 𝑄) + 𝑅))
1110eqeq2d 2749 . . . . . . . . 9 (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((2 + 𝑄) + 𝑅)))
12 2cnd 11981 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈ ℂ)
13 prmz 16308 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
1413zcnd 12356 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℂ)
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑄 ∈ ℂ)
16 prmz 16308 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℙ → 𝑅 ∈ ℤ)
1716zcnd 12356 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℙ → 𝑅 ∈ ℂ)
1817adantl 481 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
19 simp1 1134 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
20 addcl 10884 . . . . . . . . . . . . . . . . 17 ((𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑄 + 𝑅) ∈ ℂ)
21203adant1 1128 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑄 + 𝑅) ∈ ℂ)
22 addass 10889 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((2 + 𝑄) + 𝑅) = (2 + (𝑄 + 𝑅)))
2319, 21, 22comraddd 11119 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((2 + 𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2))
2412, 15, 18, 23syl3anc 1369 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((2 + 𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2))
2524eqeq2d 2749 . . . . . . . . . . . . 13 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2)))
2625adantr 480 . . . . . . . . . . . 12 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2)))
27 evenz 44970 . . . . . . . . . . . . . . 15 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
2827zcnd 12356 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
2928adantl 481 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
30 zaddcl 12290 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑄 + 𝑅) ∈ ℤ)
3113, 16, 30syl2an 595 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℤ)
3231zcnd 12356 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℂ)
3332adantr 480 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑄 + 𝑅) ∈ ℂ)
34 2cnd 11981 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
3529, 33, 34addcan2d 11109 . . . . . . . . . . . 12 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑄 + 𝑅) + 2) ↔ 𝑁 = (𝑄 + 𝑅)))
3626, 35bitrd 278 . . . . . . . . . . 11 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ 𝑁 = (𝑄 + 𝑅)))
37 simpll 763 . . . . . . . . . . . . . 14 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑄 ∈ ℙ)
38 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑄 → (𝑝 + 𝑞) = (𝑄 + 𝑞))
3938eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑄 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑄 + 𝑞)))
4039rexbidv 3225 . . . . . . . . . . . . . . 15 (𝑝 = 𝑄 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞)))
4140adantl 481 . . . . . . . . . . . . . 14 ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑝 = 𝑄) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞)))
42 simplr 765 . . . . . . . . . . . . . . 15 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑅 ∈ ℙ)
43 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑁 = (𝑄 + 𝑅))
44 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑅 → (𝑄 + 𝑞) = (𝑄 + 𝑅))
4544eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑅 → (𝑄 + 𝑅) = (𝑄 + 𝑞))
4643, 45sylan9eq 2799 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑄 + 𝑞))
4742, 46rspcedeq2vd 3559 . . . . . . . . . . . . . 14 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞))
4837, 41, 47rspcedvd 3555 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
4948ex 412 . . . . . . . . . . . 12 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5049adantr 480 . . . . . . . . . . 11 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5136, 50sylbid 239 . . . . . . . . . 10 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5251com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5311, 52syl6bi 252 . . . . . . . 8 (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
5453com13 88 . . . . . . 7 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
5554ex 412 . . . . . 6 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
56553adant1 1128 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
57563imp 1109 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5857com12 32 . . 3 (𝑃 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
59 oveq2 7263 . . . . . . . . . . 11 (𝑄 = 2 → (𝑃 + 𝑄) = (𝑃 + 2))
6059oveq1d 7270 . . . . . . . . . 10 (𝑄 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 2) + 𝑅))
6160eqeq2d 2749 . . . . . . . . 9 (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 2) + 𝑅)))
62 prmz 16308 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6362zcnd 12356 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
6463adantr 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑃 ∈ ℂ)
65 2cnd 11981 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈ ℂ)
6617adantl 481 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
6764, 65, 663jca 1126 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ))
6867adantr 480 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ))
69 add32 11123 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((𝑃 + 2) + 𝑅) = ((𝑃 + 𝑅) + 2))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑃 + 2) + 𝑅) = ((𝑃 + 𝑅) + 2))
7170eqeq2d 2749 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑅) + 2)))
7228adantl 481 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
73 zaddcl 12290 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑃 + 𝑅) ∈ ℤ)
7462, 16, 73syl2an 595 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℤ)
7574zcnd 12356 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℂ)
7675adantr 480 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑅) ∈ ℂ)
77 2cnd 11981 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
7872, 76, 77addcan2d 11109 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑅) + 2) ↔ 𝑁 = (𝑃 + 𝑅)))
7971, 78bitrd 278 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ 𝑁 = (𝑃 + 𝑅)))
80 simpll 763 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑃 ∈ ℙ)
81 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑃 → (𝑝 + 𝑞) = (𝑃 + 𝑞))
8281eqeq2d 2749 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑃 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑃 + 𝑞)))
8382rexbidv 3225 . . . . . . . . . . . . . . 15 (𝑝 = 𝑃 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
8483adantl 481 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
85 simplr 765 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑅 ∈ ℙ)
86 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑁 = (𝑃 + 𝑅))
87 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑅 → (𝑃 + 𝑞) = (𝑃 + 𝑅))
8887eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑅 → (𝑃 + 𝑅) = (𝑃 + 𝑞))
8986, 88sylan9eq 2799 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑃 + 𝑞))
9085, 89rspcedeq2vd 3559 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))
9180, 84, 90rspcedvd 3555 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
9291ex 412 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9392adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9479, 93sylbid 239 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9594com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9661, 95syl6bi 252 . . . . . . . 8 (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
9796com13 88 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
9897ex 412 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
99983adant2 1129 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
100993imp 1109 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
101100com12 32 . . 3 (𝑄 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
102 oveq2 7263 . . . . . . . . . 10 (𝑅 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 𝑄) + 2))
103102eqeq2d 2749 . . . . . . . . 9 (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑄) + 2)))
10428adantl 481 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
105 zaddcl 12290 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ)
10662, 13, 105syl2an 595 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ)
107106zcnd 12356 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑄) ∈ ℂ)
109 2cnd 11981 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
110104, 108, 109addcan2d 11109 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) ↔ 𝑁 = (𝑃 + 𝑄)))
111 simpll 763 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ ℙ)
11283adantl 481 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
113 simplr 765 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ ℙ)
114 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑁 = (𝑃 + 𝑄))
115 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑄 → (𝑃 + 𝑞) = (𝑃 + 𝑄))
116115eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑄 → (𝑃 + 𝑄) = (𝑃 + 𝑞))
117114, 116sylan9eq 2799 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑞 = 𝑄) → 𝑁 = (𝑃 + 𝑞))
118113, 117rspcedeq2vd 3559 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))
119111, 112, 118rspcedvd 3555 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
120119ex 412 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
121120adantr 480 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
122110, 121sylbid 239 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
123122com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
124103, 123syl6bi 252 . . . . . . . 8 (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
125124com13 88 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
126125ex 412 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
1271263adant3 1130 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
1281273imp 1109 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
129128com12 32 . . 3 (𝑅 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
13058, 101, 1293jaoi 1425 . 2 ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
1318, 130mpcom 38 1 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  (class class class)co 7255  cc 10800   + caddc 10805  2c2 11958  cz 12249  cprime 16304   Even ceven 44964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305  df-even 44966  df-odd 44967
This theorem is referenced by:  mogoldbb  45125
  Copyright terms: Public domain W3C validator