Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mogoldbblem Structured version   Visualization version   GIF version

Theorem mogoldbblem 47122
Description: Lemma for mogoldbb 47187. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
mogoldbblem (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
Distinct variable groups:   𝑁,𝑝,𝑞   𝑃,𝑝,𝑞   𝑄,𝑝,𝑞   𝑅,𝑝,𝑞

Proof of Theorem mogoldbblem
StepHypRef Expression
1 2evenALTV 47094 . . . . 5 2 ∈ Even
2 epee 47107 . . . . 5 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 + 2) ∈ Even )
31, 2mpan2 689 . . . 4 (𝑁 ∈ Even → (𝑁 + 2) ∈ Even )
433ad2ant2 1131 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) ∈ Even )
5 simp1 1133 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ))
6 simp3 1135 . . 3 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅))
7 even3prm2 47121 . . 3 (((𝑁 + 2) ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
84, 5, 6, 7syl3anc 1368 . 2 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
9 oveq1 7422 . . . . . . . . . . 11 (𝑃 = 2 → (𝑃 + 𝑄) = (2 + 𝑄))
109oveq1d 7430 . . . . . . . . . 10 (𝑃 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((2 + 𝑄) + 𝑅))
1110eqeq2d 2736 . . . . . . . . 9 (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((2 + 𝑄) + 𝑅)))
12 2cnd 12318 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈ ℂ)
13 prmz 16643 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
1413zcnd 12695 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℂ)
1514adantr 479 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑄 ∈ ℂ)
16 prmz 16643 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ ℙ → 𝑅 ∈ ℤ)
1716zcnd 12695 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℙ → 𝑅 ∈ ℂ)
1817adantl 480 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
19 simp1 1133 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → 2 ∈ ℂ)
20 addcl 11218 . . . . . . . . . . . . . . . . 17 ((𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑄 + 𝑅) ∈ ℂ)
21203adant1 1127 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (𝑄 + 𝑅) ∈ ℂ)
22 addass 11223 . . . . . . . . . . . . . . . 16 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((2 + 𝑄) + 𝑅) = (2 + (𝑄 + 𝑅)))
2319, 21, 22comraddd 11456 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((2 + 𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2))
2412, 15, 18, 23syl3anc 1368 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((2 + 𝑄) + 𝑅) = ((𝑄 + 𝑅) + 2))
2524eqeq2d 2736 . . . . . . . . . . . . 13 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2)))
2625adantr 479 . . . . . . . . . . . 12 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑄 + 𝑅) + 2)))
27 evenz 47032 . . . . . . . . . . . . . . 15 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
2827zcnd 12695 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
2928adantl 480 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
30 zaddcl 12630 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑄 + 𝑅) ∈ ℤ)
3113, 16, 30syl2an 594 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℤ)
3231zcnd 12695 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑄 + 𝑅) ∈ ℂ)
3332adantr 479 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑄 + 𝑅) ∈ ℂ)
34 2cnd 12318 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
3529, 33, 34addcan2d 11446 . . . . . . . . . . . 12 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑄 + 𝑅) + 2) ↔ 𝑁 = (𝑄 + 𝑅)))
3626, 35bitrd 278 . . . . . . . . . . 11 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) ↔ 𝑁 = (𝑄 + 𝑅)))
37 simpll 765 . . . . . . . . . . . . . 14 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑄 ∈ ℙ)
38 oveq1 7422 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑄 → (𝑝 + 𝑞) = (𝑄 + 𝑞))
3938eqeq2d 2736 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑄 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑄 + 𝑞)))
4039rexbidv 3169 . . . . . . . . . . . . . . 15 (𝑝 = 𝑄 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞)))
4140adantl 480 . . . . . . . . . . . . . 14 ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑝 = 𝑄) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞)))
42 simplr 767 . . . . . . . . . . . . . . 15 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑅 ∈ ℙ)
43 simpr 483 . . . . . . . . . . . . . . . 16 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → 𝑁 = (𝑄 + 𝑅))
44 oveq2 7423 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑅 → (𝑄 + 𝑞) = (𝑄 + 𝑅))
4544eqcomd 2731 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑅 → (𝑄 + 𝑅) = (𝑄 + 𝑞))
4643, 45sylan9eq 2785 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑄 + 𝑞))
4742, 46rspcedeq2vd 3610 . . . . . . . . . . . . . 14 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑄 + 𝑞))
4837, 41, 47rspcedvd 3604 . . . . . . . . . . . . 13 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑄 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
4948ex 411 . . . . . . . . . . . 12 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5049adantr 479 . . . . . . . . . . 11 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑄 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5136, 50sylbid 239 . . . . . . . . . 10 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5251com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((2 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5311, 52biimtrdi 252 . . . . . . . 8 (𝑃 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
5453com13 88 . . . . . . 7 (((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
5554ex 411 . . . . . 6 ((𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
56553adant1 1127 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
57563imp 1108 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
5857com12 32 . . 3 (𝑃 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
59 oveq2 7423 . . . . . . . . . . 11 (𝑄 = 2 → (𝑃 + 𝑄) = (𝑃 + 2))
6059oveq1d 7430 . . . . . . . . . 10 (𝑄 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 2) + 𝑅))
6160eqeq2d 2736 . . . . . . . . 9 (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 2) + 𝑅)))
62 prmz 16643 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6362zcnd 12695 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
6463adantr 479 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑃 ∈ ℂ)
65 2cnd 12318 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 2 ∈ ℂ)
6617adantl 480 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
6764, 65, 663jca 1125 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ))
6867adantr 479 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ))
69 add32 11460 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((𝑃 + 2) + 𝑅) = ((𝑃 + 𝑅) + 2))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑃 + 2) + 𝑅) = ((𝑃 + 𝑅) + 2))
7170eqeq2d 2736 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑅) + 2)))
7228adantl 480 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
73 zaddcl 12630 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑃 + 𝑅) ∈ ℤ)
7462, 16, 73syl2an 594 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℤ)
7574zcnd 12695 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑅) ∈ ℂ)
7675adantr 479 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑅) ∈ ℂ)
77 2cnd 12318 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
7872, 76, 77addcan2d 11446 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑅) + 2) ↔ 𝑁 = (𝑃 + 𝑅)))
7971, 78bitrd 278 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) ↔ 𝑁 = (𝑃 + 𝑅)))
80 simpll 765 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑃 ∈ ℙ)
81 oveq1 7422 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑃 → (𝑝 + 𝑞) = (𝑃 + 𝑞))
8281eqeq2d 2736 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑃 → (𝑁 = (𝑝 + 𝑞) ↔ 𝑁 = (𝑃 + 𝑞)))
8382rexbidv 3169 . . . . . . . . . . . . . . 15 (𝑝 = 𝑃 → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
8483adantl 480 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
85 simplr 767 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑅 ∈ ℙ)
86 simpr 483 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → 𝑁 = (𝑃 + 𝑅))
87 oveq2 7423 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑅 → (𝑃 + 𝑞) = (𝑃 + 𝑅))
8887eqcomd 2731 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑅 → (𝑃 + 𝑅) = (𝑃 + 𝑞))
8986, 88sylan9eq 2785 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) ∧ 𝑞 = 𝑅) → 𝑁 = (𝑃 + 𝑞))
9085, 89rspcedeq2vd 3610 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))
9180, 84, 90rspcedvd 3604 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
9291ex 411 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9392adantr 479 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9479, 93sylbid 239 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9594com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((𝑃 + 2) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
9661, 95biimtrdi 252 . . . . . . . 8 (𝑄 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
9796com13 88 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
9897ex 411 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
99983adant2 1128 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
100993imp 1108 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑄 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
101100com12 32 . . 3 (𝑄 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
102 oveq2 7423 . . . . . . . . . 10 (𝑅 = 2 → ((𝑃 + 𝑄) + 𝑅) = ((𝑃 + 𝑄) + 2))
103102eqeq2d 2736 . . . . . . . . 9 (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) ↔ (𝑁 + 2) = ((𝑃 + 𝑄) + 2)))
10428adantl 480 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 𝑁 ∈ ℂ)
105 zaddcl 12630 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ)
10662, 13, 105syl2an 594 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ)
107106zcnd 12695 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
108107adantr 479 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑃 + 𝑄) ∈ ℂ)
109 2cnd 12318 . . . . . . . . . . . 12 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → 2 ∈ ℂ)
110104, 108, 109addcan2d 11446 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) ↔ 𝑁 = (𝑃 + 𝑄)))
111 simpll 765 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑃 ∈ ℙ)
11283adantl 480 . . . . . . . . . . . . . 14 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑝 = 𝑃) → (∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞) ↔ ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞)))
113 simplr 767 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ ℙ)
114 simpr 483 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑁 = (𝑃 + 𝑄))
115 oveq2 7423 . . . . . . . . . . . . . . . . 17 (𝑞 = 𝑄 → (𝑃 + 𝑞) = (𝑃 + 𝑄))
116115eqcomd 2731 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑄 → (𝑃 + 𝑄) = (𝑃 + 𝑞))
117114, 116sylan9eq 2785 . . . . . . . . . . . . . . 15 ((((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) ∧ 𝑞 = 𝑄) → 𝑁 = (𝑃 + 𝑞))
118113, 117rspcedeq2vd 3610 . . . . . . . . . . . . . 14 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑞 ∈ ℙ 𝑁 = (𝑃 + 𝑞))
119111, 112, 118rspcedvd 3604 . . . . . . . . . . . . 13 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
120119ex 411 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
121120adantr 479 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → (𝑁 = (𝑃 + 𝑄) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
122110, 121sylbid 239 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
123122com12 32 . . . . . . . . 9 ((𝑁 + 2) = ((𝑃 + 𝑄) + 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
124103, 123biimtrdi 252 . . . . . . . 8 (𝑅 = 2 → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
125124com13 88 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 ∈ Even ) → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))))
126125ex 411 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
1271263adant3 1129 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → ((𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))))
1281273imp 1108 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → (𝑅 = 2 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
129128com12 32 . . 3 (𝑅 = 2 → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
13058, 101, 1293jaoi 1424 . 2 ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) → (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)))
1318, 130mpcom 38 1 (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wrex 3060  (class class class)co 7415  cc 11134   + caddc 11139  2c2 12295  cz 12586  cprime 16639   Even ceven 47026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-dvds 16229  df-prm 16640  df-even 47028  df-odd 47029
This theorem is referenced by:  mogoldbb  47187
  Copyright terms: Public domain W3C validator