Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbwt Structured version   Visualization version   GIF version

Theorem sbgoldbwt 44902
Description: If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
sbgoldbwt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem sbgoldbwt
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 44756 . . . 4 (𝑚 ∈ Odd → 𝑚 ∈ ℤ)
2 5nn 11916 . . . . . . . 8 5 ∈ ℕ
32nnzi 12201 . . . . . . 7 5 ∈ ℤ
4 zltp1le 12227 . . . . . . 7 ((5 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
53, 4mpan 690 . . . . . 6 (𝑚 ∈ ℤ → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
6 5p1e6 11977 . . . . . . . . 9 (5 + 1) = 6
76breq1i 5060 . . . . . . . 8 ((5 + 1) ≤ 𝑚 ↔ 6 ≤ 𝑚)
8 6re 11920 . . . . . . . . . 10 6 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝑚 ∈ ℤ → 6 ∈ ℝ)
10 zre 12180 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
119, 10leloed 10975 . . . . . . . 8 (𝑚 ∈ ℤ → (6 ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
127, 11syl5bb 286 . . . . . . 7 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
13 6nn 11919 . . . . . . . . . . . . 13 6 ∈ ℕ
1413nnzi 12201 . . . . . . . . . . . 12 6 ∈ ℤ
15 zltp1le 12227 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
1614, 15mpan 690 . . . . . . . . . . 11 (𝑚 ∈ ℤ → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
17 6p1e7 11978 . . . . . . . . . . . . . 14 (6 + 1) = 7
1817breq1i 5060 . . . . . . . . . . . . 13 ((6 + 1) ≤ 𝑚 ↔ 7 ≤ 𝑚)
19 7re 11923 . . . . . . . . . . . . . . 15 7 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → 7 ∈ ℝ)
2120, 10leloed 10975 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (7 ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
2218, 21syl5bb 286 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
23 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 𝑚 ∈ Odd )
24 3odd 44833 . . . . . . . . . . . . . . . . . . . 20 3 ∈ Odd
2523, 24jctir 524 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (𝑚 ∈ Odd ∧ 3 ∈ Odd ))
26 omoeALTV 44810 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ Odd ∧ 3 ∈ Odd ) → (𝑚 − 3) ∈ Even )
27 breq2 5057 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3)))
28 eleq1 2825 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven ))
2927, 28imbi12d 348 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑚 − 3) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3029rspcv 3532 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ Even → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3125, 26, 303syl 18 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
32 4p3e7 11984 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 + 3) = 7
3332eqcomi 2746 . . . . . . . . . . . . . . . . . . . . . . 23 7 = (4 + 3)
3433breq1i 5060 . . . . . . . . . . . . . . . . . . . . . 22 (7 < 𝑚 ↔ (4 + 3) < 𝑚)
35 4re 11914 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
3635a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 4 ∈ ℝ)
37 3re 11910 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 3 ∈ ℝ)
39 ltaddsub 11306 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 ↔ 4 < (𝑚 − 3)))
4039biimpd 232 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4136, 38, 10, 40syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4234, 41syl5bi 245 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℤ → (7 < 𝑚 → 4 < (𝑚 − 3)))
4342impcom 411 . . . . . . . . . . . . . . . . . . . 20 ((7 < 𝑚𝑚 ∈ ℤ) → 4 < (𝑚 − 3))
4443adantr 484 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 4 < (𝑚 − 3))
45 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 (4 < (𝑚 − 3) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
47 isgbe 44876 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ GoldbachEven ↔ ((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))))
48 3prm 16251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 ∈ ℙ
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ℤ → 3 ∈ ℙ)
50 zcn 12181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
51 3cn 11911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 ∈ ℂ
5250, 51jctir 524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℤ → (𝑚 ∈ ℂ ∧ 3 ∈ ℂ))
53 npcan 11087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑚 − 3) + 3) = 𝑚)
5453eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑚 = ((𝑚 − 3) + 3))
5552, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑚 ∈ ℤ → 𝑚 = ((𝑚 − 3) + 3))
56 oveq2 7221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (3 = 𝑟 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5756eqcoms 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 = 3 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5855, 57sylan9eq 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 ∈ ℤ ∧ 𝑟 = 3) → 𝑚 = ((𝑚 − 3) + 𝑟))
5949, 58rspcedeq2vd 3544 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟))
60 oveq1 7220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 − 3) = (𝑝 + 𝑞) → ((𝑚 − 3) + 𝑟) = ((𝑝 + 𝑞) + 𝑟))
6160eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 = ((𝑚 − 3) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6261rexbidv 3216 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 − 3) = (𝑝 + 𝑞) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6359, 62syl5ib 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
64633ad2ant3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6564com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℤ → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6665ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6766reximdva 3193 . . . . . . . . . . . . . . . . . . . . . . 23 ((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6867reximdva 3193 . . . . . . . . . . . . . . . . . . . . . 22 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6968, 23jctild 529 . . . . . . . . . . . . . . . . . . . . 21 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
70 isgbow 44877 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ GoldbachOddW ↔ (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
7169, 70syl6ibr 255 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOddW ))
7271adantld 494 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOddW ))
7347, 72syl5bi 245 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOddW ))
7431, 46, 733syld 60 . . . . . . . . . . . . . . . . 17 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW ))
7574ex 416 . . . . . . . . . . . . . . . 16 ((7 < 𝑚𝑚 ∈ ℤ) → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW )))
7675com23 86 . . . . . . . . . . . . . . 15 ((7 < 𝑚𝑚 ∈ ℤ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
7776ex 416 . . . . . . . . . . . . . 14 (7 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
78 7gbow 44897 . . . . . . . . . . . . . . . . . 18 7 ∈ GoldbachOddW
79 eleq1 2825 . . . . . . . . . . . . . . . . . 18 (7 = 𝑚 → (7 ∈ GoldbachOddW ↔ 𝑚 ∈ GoldbachOddW ))
8078, 79mpbii 236 . . . . . . . . . . . . . . . . 17 (7 = 𝑚𝑚 ∈ GoldbachOddW )
8180a1d 25 . . . . . . . . . . . . . . . 16 (7 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
8281a1d 25 . . . . . . . . . . . . . . 15 (7 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
8382a1d 25 . . . . . . . . . . . . . 14 (7 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8477, 83jaoi 857 . . . . . . . . . . . . 13 ((7 < 𝑚 ∨ 7 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8584com12 32 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((7 < 𝑚 ∨ 7 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8622, 85sylbid 243 . . . . . . . . . . 11 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8716, 86sylbid 243 . . . . . . . . . 10 (𝑚 ∈ ℤ → (6 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8887com12 32 . . . . . . . . 9 (6 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
89 eleq1 2825 . . . . . . . . . . . 12 (6 = 𝑚 → (6 ∈ Odd ↔ 𝑚 ∈ Odd ))
90 6even 44836 . . . . . . . . . . . . 13 6 ∈ Even
91 evennodd 44768 . . . . . . . . . . . . . 14 (6 ∈ Even → ¬ 6 ∈ Odd )
9291pm2.21d 121 . . . . . . . . . . . . 13 (6 ∈ Even → (6 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9390, 92ax-mp 5 . . . . . . . . . . . 12 (6 ∈ Odd → 𝑚 ∈ GoldbachOddW )
9489, 93syl6bir 257 . . . . . . . . . . 11 (6 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9594a1d 25 . . . . . . . . . 10 (6 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
9695a1d 25 . . . . . . . . 9 (6 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9788, 96jaoi 857 . . . . . . . 8 ((6 < 𝑚 ∨ 6 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9897com12 32 . . . . . . 7 (𝑚 ∈ ℤ → ((6 < 𝑚 ∨ 6 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9912, 98sylbid 243 . . . . . 6 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
1005, 99sylbid 243 . . . . 5 (𝑚 ∈ ℤ → (5 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
101100com24 95 . . . 4 (𝑚 ∈ ℤ → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))))
1021, 101mpcom 38 . . 3 (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW )))
103102impcom 411 . 2 ((∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ∧ 𝑚 ∈ Odd ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))
104103ralrimiva 3105 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062   class class class wbr 5053  (class class class)co 7213  cc 10727  cr 10728  1c1 10730   + caddc 10732   < clt 10867  cle 10868  cmin 11062  3c3 11886  4c4 11887  5c5 11888  6c6 11889  7c7 11890  cz 12176  cprime 16228   Even ceven 44749   Odd codd 44750   GoldbachEven cgbe 44870   GoldbachOddW cgbow 44871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-prm 16229  df-even 44751  df-odd 44752  df-gbe 44873  df-gbow 44874
This theorem is referenced by:  sbgoldbm  44909  bgoldbnnsum3prm  44929
  Copyright terms: Public domain W3C validator