Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbwt Structured version   Visualization version   GIF version

Theorem sbgoldbwt 47737
Description: If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
sbgoldbwt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem sbgoldbwt
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 47591 . . . 4 (𝑚 ∈ Odd → 𝑚 ∈ ℤ)
2 5nn 12334 . . . . . . . 8 5 ∈ ℕ
32nnzi 12624 . . . . . . 7 5 ∈ ℤ
4 zltp1le 12650 . . . . . . 7 ((5 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
53, 4mpan 690 . . . . . 6 (𝑚 ∈ ℤ → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
6 5p1e6 12395 . . . . . . . . 9 (5 + 1) = 6
76breq1i 5130 . . . . . . . 8 ((5 + 1) ≤ 𝑚 ↔ 6 ≤ 𝑚)
8 6re 12338 . . . . . . . . . 10 6 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝑚 ∈ ℤ → 6 ∈ ℝ)
10 zre 12600 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
119, 10leloed 11386 . . . . . . . 8 (𝑚 ∈ ℤ → (6 ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
127, 11bitrid 283 . . . . . . 7 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
13 6nn 12337 . . . . . . . . . . . . 13 6 ∈ ℕ
1413nnzi 12624 . . . . . . . . . . . 12 6 ∈ ℤ
15 zltp1le 12650 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
1614, 15mpan 690 . . . . . . . . . . 11 (𝑚 ∈ ℤ → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
17 6p1e7 12396 . . . . . . . . . . . . . 14 (6 + 1) = 7
1817breq1i 5130 . . . . . . . . . . . . 13 ((6 + 1) ≤ 𝑚 ↔ 7 ≤ 𝑚)
19 7re 12341 . . . . . . . . . . . . . . 15 7 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → 7 ∈ ℝ)
2120, 10leloed 11386 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (7 ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
2218, 21bitrid 283 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
23 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 𝑚 ∈ Odd )
24 3odd 47668 . . . . . . . . . . . . . . . . . . . 20 3 ∈ Odd
2523, 24jctir 520 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (𝑚 ∈ Odd ∧ 3 ∈ Odd ))
26 omoeALTV 47645 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ Odd ∧ 3 ∈ Odd ) → (𝑚 − 3) ∈ Even )
27 breq2 5127 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3)))
28 eleq1 2821 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven ))
2927, 28imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑚 − 3) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3029rspcv 3601 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ Even → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3125, 26, 303syl 18 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
32 4p3e7 12402 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 + 3) = 7
3332eqcomi 2743 . . . . . . . . . . . . . . . . . . . . . . 23 7 = (4 + 3)
3433breq1i 5130 . . . . . . . . . . . . . . . . . . . . . 22 (7 < 𝑚 ↔ (4 + 3) < 𝑚)
35 4re 12332 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
3635a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 4 ∈ ℝ)
37 3re 12328 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 3 ∈ ℝ)
39 ltaddsub 11719 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 ↔ 4 < (𝑚 − 3)))
4039biimpd 229 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4136, 38, 10, 40syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4234, 41biimtrid 242 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℤ → (7 < 𝑚 → 4 < (𝑚 − 3)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((7 < 𝑚𝑚 ∈ ℤ) → 4 < (𝑚 − 3))
4443adantr 480 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 4 < (𝑚 − 3))
45 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 (4 < (𝑚 − 3) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
47 isgbe 47711 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ GoldbachEven ↔ ((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))))
48 3prm 16714 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 ∈ ℙ
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ℤ → 3 ∈ ℙ)
50 zcn 12601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
51 3cn 12329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 ∈ ℂ
5250, 51jctir 520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℤ → (𝑚 ∈ ℂ ∧ 3 ∈ ℂ))
53 npcan 11499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑚 − 3) + 3) = 𝑚)
5453eqcomd 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑚 = ((𝑚 − 3) + 3))
5552, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑚 ∈ ℤ → 𝑚 = ((𝑚 − 3) + 3))
56 oveq2 7421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (3 = 𝑟 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5756eqcoms 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 = 3 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5855, 57sylan9eq 2789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 ∈ ℤ ∧ 𝑟 = 3) → 𝑚 = ((𝑚 − 3) + 𝑟))
5949, 58rspcedeq2vd 3613 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟))
60 oveq1 7420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 − 3) = (𝑝 + 𝑞) → ((𝑚 − 3) + 𝑟) = ((𝑝 + 𝑞) + 𝑟))
6160eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 = ((𝑚 − 3) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6261rexbidv 3166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 − 3) = (𝑝 + 𝑞) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6359, 62imbitrid 244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
64633ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6564com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℤ → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6665ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6766reximdva 3155 . . . . . . . . . . . . . . . . . . . . . . 23 ((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6867reximdva 3155 . . . . . . . . . . . . . . . . . . . . . 22 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6968, 23jctild 525 . . . . . . . . . . . . . . . . . . . . 21 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
70 isgbow 47712 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ GoldbachOddW ↔ (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
7169, 70imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOddW ))
7271adantld 490 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOddW ))
7347, 72biimtrid 242 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOddW ))
7431, 46, 733syld 60 . . . . . . . . . . . . . . . . 17 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW ))
7574ex 412 . . . . . . . . . . . . . . . 16 ((7 < 𝑚𝑚 ∈ ℤ) → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW )))
7675com23 86 . . . . . . . . . . . . . . 15 ((7 < 𝑚𝑚 ∈ ℤ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
7776ex 412 . . . . . . . . . . . . . 14 (7 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
78 7gbow 47732 . . . . . . . . . . . . . . . . . 18 7 ∈ GoldbachOddW
79 eleq1 2821 . . . . . . . . . . . . . . . . . 18 (7 = 𝑚 → (7 ∈ GoldbachOddW ↔ 𝑚 ∈ GoldbachOddW ))
8078, 79mpbii 233 . . . . . . . . . . . . . . . . 17 (7 = 𝑚𝑚 ∈ GoldbachOddW )
8180a1d 25 . . . . . . . . . . . . . . . 16 (7 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
8281a1d 25 . . . . . . . . . . . . . . 15 (7 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
8382a1d 25 . . . . . . . . . . . . . 14 (7 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8477, 83jaoi 857 . . . . . . . . . . . . 13 ((7 < 𝑚 ∨ 7 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8584com12 32 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((7 < 𝑚 ∨ 7 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8622, 85sylbid 240 . . . . . . . . . . 11 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8716, 86sylbid 240 . . . . . . . . . 10 (𝑚 ∈ ℤ → (6 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8887com12 32 . . . . . . . . 9 (6 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
89 eleq1 2821 . . . . . . . . . . . 12 (6 = 𝑚 → (6 ∈ Odd ↔ 𝑚 ∈ Odd ))
90 6even 47671 . . . . . . . . . . . . 13 6 ∈ Even
91 evennodd 47603 . . . . . . . . . . . . . 14 (6 ∈ Even → ¬ 6 ∈ Odd )
9291pm2.21d 121 . . . . . . . . . . . . 13 (6 ∈ Even → (6 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9390, 92ax-mp 5 . . . . . . . . . . . 12 (6 ∈ Odd → 𝑚 ∈ GoldbachOddW )
9489, 93biimtrrdi 254 . . . . . . . . . . 11 (6 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9594a1d 25 . . . . . . . . . 10 (6 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
9695a1d 25 . . . . . . . . 9 (6 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9788, 96jaoi 857 . . . . . . . 8 ((6 < 𝑚 ∨ 6 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9897com12 32 . . . . . . 7 (𝑚 ∈ ℤ → ((6 < 𝑚 ∨ 6 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9912, 98sylbid 240 . . . . . 6 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
1005, 99sylbid 240 . . . . 5 (𝑚 ∈ ℤ → (5 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
101100com24 95 . . . 4 (𝑚 ∈ ℤ → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))))
1021, 101mpcom 38 . . 3 (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW )))
103102impcom 407 . 2 ((∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ∧ 𝑚 ∈ Odd ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))
104103ralrimiva 3133 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059   class class class wbr 5123  (class class class)co 7413  cc 11135  cr 11136  1c1 11138   + caddc 11140   < clt 11277  cle 11278  cmin 11474  3c3 12304  4c4 12305  5c5 12306  6c6 12307  7c7 12308  cz 12596  cprime 16691   Even ceven 47584   Odd codd 47585   GoldbachEven cgbe 47705   GoldbachOddW cgbow 47706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-dvds 16274  df-prm 16692  df-even 47586  df-odd 47587  df-gbe 47708  df-gbow 47709
This theorem is referenced by:  sbgoldbm  47744  bgoldbnnsum3prm  47764
  Copyright terms: Public domain W3C validator