Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbwt Structured version   Visualization version   GIF version

Theorem sbgoldbwt 47778
Description: If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
sbgoldbwt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem sbgoldbwt
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 47632 . . . 4 (𝑚 ∈ Odd → 𝑚 ∈ ℤ)
2 5nn 12272 . . . . . . . 8 5 ∈ ℕ
32nnzi 12557 . . . . . . 7 5 ∈ ℤ
4 zltp1le 12583 . . . . . . 7 ((5 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
53, 4mpan 690 . . . . . 6 (𝑚 ∈ ℤ → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
6 5p1e6 12328 . . . . . . . . 9 (5 + 1) = 6
76breq1i 5114 . . . . . . . 8 ((5 + 1) ≤ 𝑚 ↔ 6 ≤ 𝑚)
8 6re 12276 . . . . . . . . . 10 6 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝑚 ∈ ℤ → 6 ∈ ℝ)
10 zre 12533 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
119, 10leloed 11317 . . . . . . . 8 (𝑚 ∈ ℤ → (6 ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
127, 11bitrid 283 . . . . . . 7 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
13 6nn 12275 . . . . . . . . . . . . 13 6 ∈ ℕ
1413nnzi 12557 . . . . . . . . . . . 12 6 ∈ ℤ
15 zltp1le 12583 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
1614, 15mpan 690 . . . . . . . . . . 11 (𝑚 ∈ ℤ → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
17 6p1e7 12329 . . . . . . . . . . . . . 14 (6 + 1) = 7
1817breq1i 5114 . . . . . . . . . . . . 13 ((6 + 1) ≤ 𝑚 ↔ 7 ≤ 𝑚)
19 7re 12279 . . . . . . . . . . . . . . 15 7 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → 7 ∈ ℝ)
2120, 10leloed 11317 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (7 ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
2218, 21bitrid 283 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
23 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 𝑚 ∈ Odd )
24 3odd 47709 . . . . . . . . . . . . . . . . . . . 20 3 ∈ Odd
2523, 24jctir 520 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (𝑚 ∈ Odd ∧ 3 ∈ Odd ))
26 omoeALTV 47686 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ Odd ∧ 3 ∈ Odd ) → (𝑚 − 3) ∈ Even )
27 breq2 5111 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3)))
28 eleq1 2816 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven ))
2927, 28imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑚 − 3) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3029rspcv 3584 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ Even → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3125, 26, 303syl 18 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
32 4p3e7 12335 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 + 3) = 7
3332eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . 23 7 = (4 + 3)
3433breq1i 5114 . . . . . . . . . . . . . . . . . . . . . 22 (7 < 𝑚 ↔ (4 + 3) < 𝑚)
35 4re 12270 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
3635a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 4 ∈ ℝ)
37 3re 12266 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 3 ∈ ℝ)
39 ltaddsub 11652 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 ↔ 4 < (𝑚 − 3)))
4039biimpd 229 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4136, 38, 10, 40syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4234, 41biimtrid 242 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℤ → (7 < 𝑚 → 4 < (𝑚 − 3)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((7 < 𝑚𝑚 ∈ ℤ) → 4 < (𝑚 − 3))
4443adantr 480 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 4 < (𝑚 − 3))
45 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 (4 < (𝑚 − 3) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
47 isgbe 47752 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ GoldbachEven ↔ ((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))))
48 3prm 16664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 ∈ ℙ
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ℤ → 3 ∈ ℙ)
50 zcn 12534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
51 3cn 12267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 ∈ ℂ
5250, 51jctir 520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℤ → (𝑚 ∈ ℂ ∧ 3 ∈ ℂ))
53 npcan 11430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑚 − 3) + 3) = 𝑚)
5453eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑚 = ((𝑚 − 3) + 3))
5552, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑚 ∈ ℤ → 𝑚 = ((𝑚 − 3) + 3))
56 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (3 = 𝑟 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5756eqcoms 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 = 3 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5855, 57sylan9eq 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 ∈ ℤ ∧ 𝑟 = 3) → 𝑚 = ((𝑚 − 3) + 𝑟))
5949, 58rspcedeq2vd 3596 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟))
60 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 − 3) = (𝑝 + 𝑞) → ((𝑚 − 3) + 𝑟) = ((𝑝 + 𝑞) + 𝑟))
6160eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 = ((𝑚 − 3) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6261rexbidv 3157 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 − 3) = (𝑝 + 𝑞) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6359, 62imbitrid 244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
64633ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6564com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℤ → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6665ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6766reximdva 3146 . . . . . . . . . . . . . . . . . . . . . . 23 ((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6867reximdva 3146 . . . . . . . . . . . . . . . . . . . . . 22 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6968, 23jctild 525 . . . . . . . . . . . . . . . . . . . . 21 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
70 isgbow 47753 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ GoldbachOddW ↔ (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
7169, 70imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOddW ))
7271adantld 490 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOddW ))
7347, 72biimtrid 242 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOddW ))
7431, 46, 733syld 60 . . . . . . . . . . . . . . . . 17 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW ))
7574ex 412 . . . . . . . . . . . . . . . 16 ((7 < 𝑚𝑚 ∈ ℤ) → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW )))
7675com23 86 . . . . . . . . . . . . . . 15 ((7 < 𝑚𝑚 ∈ ℤ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
7776ex 412 . . . . . . . . . . . . . 14 (7 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
78 7gbow 47773 . . . . . . . . . . . . . . . . . 18 7 ∈ GoldbachOddW
79 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (7 = 𝑚 → (7 ∈ GoldbachOddW ↔ 𝑚 ∈ GoldbachOddW ))
8078, 79mpbii 233 . . . . . . . . . . . . . . . . 17 (7 = 𝑚𝑚 ∈ GoldbachOddW )
8180a1d 25 . . . . . . . . . . . . . . . 16 (7 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
8281a1d 25 . . . . . . . . . . . . . . 15 (7 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
8382a1d 25 . . . . . . . . . . . . . 14 (7 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8477, 83jaoi 857 . . . . . . . . . . . . 13 ((7 < 𝑚 ∨ 7 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8584com12 32 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((7 < 𝑚 ∨ 7 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8622, 85sylbid 240 . . . . . . . . . . 11 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8716, 86sylbid 240 . . . . . . . . . 10 (𝑚 ∈ ℤ → (6 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8887com12 32 . . . . . . . . 9 (6 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
89 eleq1 2816 . . . . . . . . . . . 12 (6 = 𝑚 → (6 ∈ Odd ↔ 𝑚 ∈ Odd ))
90 6even 47712 . . . . . . . . . . . . 13 6 ∈ Even
91 evennodd 47644 . . . . . . . . . . . . . 14 (6 ∈ Even → ¬ 6 ∈ Odd )
9291pm2.21d 121 . . . . . . . . . . . . 13 (6 ∈ Even → (6 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9390, 92ax-mp 5 . . . . . . . . . . . 12 (6 ∈ Odd → 𝑚 ∈ GoldbachOddW )
9489, 93biimtrrdi 254 . . . . . . . . . . 11 (6 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9594a1d 25 . . . . . . . . . 10 (6 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
9695a1d 25 . . . . . . . . 9 (6 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9788, 96jaoi 857 . . . . . . . 8 ((6 < 𝑚 ∨ 6 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9897com12 32 . . . . . . 7 (𝑚 ∈ ℤ → ((6 < 𝑚 ∨ 6 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9912, 98sylbid 240 . . . . . 6 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
1005, 99sylbid 240 . . . . 5 (𝑚 ∈ ℤ → (5 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
101100com24 95 . . . 4 (𝑚 ∈ ℤ → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))))
1021, 101mpcom 38 . . 3 (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW )))
103102impcom 407 . 2 ((∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ∧ 𝑚 ∈ Odd ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))
104103ralrimiva 3125 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  3c3 12242  4c4 12243  5c5 12244  6c6 12245  7c7 12246  cz 12529  cprime 16641   Even ceven 47625   Odd codd 47626   GoldbachEven cgbe 47746   GoldbachOddW cgbow 47747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642  df-even 47627  df-odd 47628  df-gbe 47749  df-gbow 47750
This theorem is referenced by:  sbgoldbm  47785  bgoldbnnsum3prm  47805
  Copyright terms: Public domain W3C validator