Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbwt Structured version   Visualization version   GIF version

Theorem sbgoldbwt 47764
Description: If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.)
Assertion
Ref Expression
sbgoldbwt (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Distinct variable group:   𝑚,𝑛

Proof of Theorem sbgoldbwt
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 47618 . . . 4 (𝑚 ∈ Odd → 𝑚 ∈ ℤ)
2 5nn 12352 . . . . . . . 8 5 ∈ ℕ
32nnzi 12641 . . . . . . 7 5 ∈ ℤ
4 zltp1le 12667 . . . . . . 7 ((5 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
53, 4mpan 690 . . . . . 6 (𝑚 ∈ ℤ → (5 < 𝑚 ↔ (5 + 1) ≤ 𝑚))
6 5p1e6 12413 . . . . . . . . 9 (5 + 1) = 6
76breq1i 5150 . . . . . . . 8 ((5 + 1) ≤ 𝑚 ↔ 6 ≤ 𝑚)
8 6re 12356 . . . . . . . . . 10 6 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝑚 ∈ ℤ → 6 ∈ ℝ)
10 zre 12617 . . . . . . . . 9 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
119, 10leloed 11404 . . . . . . . 8 (𝑚 ∈ ℤ → (6 ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
127, 11bitrid 283 . . . . . . 7 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 ↔ (6 < 𝑚 ∨ 6 = 𝑚)))
13 6nn 12355 . . . . . . . . . . . . 13 6 ∈ ℕ
1413nnzi 12641 . . . . . . . . . . . 12 6 ∈ ℤ
15 zltp1le 12667 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
1614, 15mpan 690 . . . . . . . . . . 11 (𝑚 ∈ ℤ → (6 < 𝑚 ↔ (6 + 1) ≤ 𝑚))
17 6p1e7 12414 . . . . . . . . . . . . . 14 (6 + 1) = 7
1817breq1i 5150 . . . . . . . . . . . . 13 ((6 + 1) ≤ 𝑚 ↔ 7 ≤ 𝑚)
19 7re 12359 . . . . . . . . . . . . . . 15 7 ∈ ℝ
2019a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → 7 ∈ ℝ)
2120, 10leloed 11404 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (7 ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
2218, 21bitrid 283 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 ↔ (7 < 𝑚 ∨ 7 = 𝑚)))
23 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 𝑚 ∈ Odd )
24 3odd 47695 . . . . . . . . . . . . . . . . . . . 20 3 ∈ Odd
2523, 24jctir 520 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (𝑚 ∈ Odd ∧ 3 ∈ Odd ))
26 omoeALTV 47672 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ Odd ∧ 3 ∈ Odd ) → (𝑚 − 3) ∈ Even )
27 breq2 5147 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (4 < 𝑛 ↔ 4 < (𝑚 − 3)))
28 eleq1 2829 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑚 − 3) → (𝑛 ∈ GoldbachEven ↔ (𝑚 − 3) ∈ GoldbachEven ))
2927, 28imbi12d 344 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑚 − 3) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3029rspcv 3618 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ Even → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
3125, 26, 303syl 18 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven )))
32 4p3e7 12420 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 + 3) = 7
3332eqcomi 2746 . . . . . . . . . . . . . . . . . . . . . . 23 7 = (4 + 3)
3433breq1i 5150 . . . . . . . . . . . . . . . . . . . . . 22 (7 < 𝑚 ↔ (4 + 3) < 𝑚)
35 4re 12350 . . . . . . . . . . . . . . . . . . . . . . . 24 4 ∈ ℝ
3635a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 4 ∈ ℝ)
37 3re 12346 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℤ → 3 ∈ ℝ)
39 ltaddsub 11737 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 ↔ 4 < (𝑚 − 3)))
4039biimpd 229 . . . . . . . . . . . . . . . . . . . . . . 23 ((4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4136, 38, 10, 40syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ℤ → ((4 + 3) < 𝑚 → 4 < (𝑚 − 3)))
4234, 41biimtrid 242 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℤ → (7 < 𝑚 → 4 < (𝑚 − 3)))
4342impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((7 < 𝑚𝑚 ∈ ℤ) → 4 < (𝑚 − 3))
4443adantr 480 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → 4 < (𝑚 − 3))
45 pm2.27 42 . . . . . . . . . . . . . . . . . . 19 (4 < (𝑚 − 3) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((4 < (𝑚 − 3) → (𝑚 − 3) ∈ GoldbachEven ) → (𝑚 − 3) ∈ GoldbachEven ))
47 isgbe 47738 . . . . . . . . . . . . . . . . . . 19 ((𝑚 − 3) ∈ GoldbachEven ↔ ((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))))
48 3prm 16731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 ∈ ℙ
4948a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 ∈ ℤ → 3 ∈ ℙ)
50 zcn 12618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
51 3cn 12347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 ∈ ℂ
5250, 51jctir 520 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑚 ∈ ℤ → (𝑚 ∈ ℂ ∧ 3 ∈ ℂ))
53 npcan 11517 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑚 − 3) + 3) = 𝑚)
5453eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑚 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑚 = ((𝑚 − 3) + 3))
5552, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑚 ∈ ℤ → 𝑚 = ((𝑚 − 3) + 3))
56 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (3 = 𝑟 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5756eqcoms 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑟 = 3 → ((𝑚 − 3) + 3) = ((𝑚 − 3) + 𝑟))
5855, 57sylan9eq 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 ∈ ℤ ∧ 𝑟 = 3) → 𝑚 = ((𝑚 − 3) + 𝑟))
5949, 58rspcedeq2vd 3630 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟))
60 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚 − 3) = (𝑝 + 𝑞) → ((𝑚 − 3) + 𝑟) = ((𝑝 + 𝑞) + 𝑟))
6160eqeq2d 2748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 = ((𝑚 − 3) + 𝑟) ↔ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6261rexbidv 3179 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑚 − 3) = (𝑝 + 𝑞) → (∃𝑟 ∈ ℙ 𝑚 = ((𝑚 − 3) + 𝑟) ↔ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6359, 62imbitrid 244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑚 − 3) = (𝑝 + 𝑞) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
64633ad2ant3 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ ℤ → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6564com12 32 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 ∈ ℤ → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6665ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6766reximdva 3168 . . . . . . . . . . . . . . . . . . . . . . 23 ((((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ) → (∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6867reximdva 3168 . . . . . . . . . . . . . . . . . . . . . 22 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
6968, 23jctild 525 . . . . . . . . . . . . . . . . . . . . 21 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟))))
70 isgbow 47739 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ GoldbachOddW ↔ (𝑚 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑚 = ((𝑝 + 𝑞) + 𝑟)))
7169, 70imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞)) → 𝑚 ∈ GoldbachOddW ))
7271adantld 490 . . . . . . . . . . . . . . . . . . 19 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (((𝑚 − 3) ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ (𝑚 − 3) = (𝑝 + 𝑞))) → 𝑚 ∈ GoldbachOddW ))
7347, 72biimtrid 242 . . . . . . . . . . . . . . . . . 18 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → ((𝑚 − 3) ∈ GoldbachEven → 𝑚 ∈ GoldbachOddW ))
7431, 46, 733syld 60 . . . . . . . . . . . . . . . . 17 (((7 < 𝑚𝑚 ∈ ℤ) ∧ 𝑚 ∈ Odd ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW ))
7574ex 412 . . . . . . . . . . . . . . . 16 ((7 < 𝑚𝑚 ∈ ℤ) → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW )))
7675com23 86 . . . . . . . . . . . . . . 15 ((7 < 𝑚𝑚 ∈ ℤ) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
7776ex 412 . . . . . . . . . . . . . 14 (7 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
78 7gbow 47759 . . . . . . . . . . . . . . . . . 18 7 ∈ GoldbachOddW
79 eleq1 2829 . . . . . . . . . . . . . . . . . 18 (7 = 𝑚 → (7 ∈ GoldbachOddW ↔ 𝑚 ∈ GoldbachOddW ))
8078, 79mpbii 233 . . . . . . . . . . . . . . . . 17 (7 = 𝑚𝑚 ∈ GoldbachOddW )
8180a1d 25 . . . . . . . . . . . . . . . 16 (7 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
8281a1d 25 . . . . . . . . . . . . . . 15 (7 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
8382a1d 25 . . . . . . . . . . . . . 14 (7 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8477, 83jaoi 858 . . . . . . . . . . . . 13 ((7 < 𝑚 ∨ 7 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8584com12 32 . . . . . . . . . . . 12 (𝑚 ∈ ℤ → ((7 < 𝑚 ∨ 7 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8622, 85sylbid 240 . . . . . . . . . . 11 (𝑚 ∈ ℤ → ((6 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8716, 86sylbid 240 . . . . . . . . . 10 (𝑚 ∈ ℤ → (6 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
8887com12 32 . . . . . . . . 9 (6 < 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
89 eleq1 2829 . . . . . . . . . . . 12 (6 = 𝑚 → (6 ∈ Odd ↔ 𝑚 ∈ Odd ))
90 6even 47698 . . . . . . . . . . . . 13 6 ∈ Even
91 evennodd 47630 . . . . . . . . . . . . . 14 (6 ∈ Even → ¬ 6 ∈ Odd )
9291pm2.21d 121 . . . . . . . . . . . . 13 (6 ∈ Even → (6 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9390, 92ax-mp 5 . . . . . . . . . . . 12 (6 ∈ Odd → 𝑚 ∈ GoldbachOddW )
9489, 93biimtrrdi 254 . . . . . . . . . . 11 (6 = 𝑚 → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))
9594a1d 25 . . . . . . . . . 10 (6 = 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW )))
9695a1d 25 . . . . . . . . 9 (6 = 𝑚 → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9788, 96jaoi 858 . . . . . . . 8 ((6 < 𝑚 ∨ 6 = 𝑚) → (𝑚 ∈ ℤ → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9897com12 32 . . . . . . 7 (𝑚 ∈ ℤ → ((6 < 𝑚 ∨ 6 = 𝑚) → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
9912, 98sylbid 240 . . . . . 6 (𝑚 ∈ ℤ → ((5 + 1) ≤ 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
1005, 99sylbid 240 . . . . 5 (𝑚 ∈ ℤ → (5 < 𝑚 → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ))))
101100com24 95 . . . 4 (𝑚 ∈ ℤ → (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))))
1021, 101mpcom 38 . . 3 (𝑚 ∈ Odd → (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → (5 < 𝑚𝑚 ∈ GoldbachOddW )))
103102impcom 407 . 2 ((∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) ∧ 𝑚 ∈ Odd ) → (5 < 𝑚𝑚 ∈ GoldbachOddW ))
104103ralrimiva 3146 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492  3c3 12322  4c4 12323  5c5 12324  6c6 12325  7c7 12326  cz 12613  cprime 16708   Even ceven 47611   Odd codd 47612   GoldbachEven cgbe 47732   GoldbachOddW cgbow 47733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-even 47613  df-odd 47614  df-gbe 47735  df-gbow 47736
This theorem is referenced by:  sbgoldbm  47771  bgoldbnnsum3prm  47791
  Copyright terms: Public domain W3C validator