MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrctshift Structured version   Visualization version   GIF version

Theorem eucrctshift 28607
Description: Cyclically shifting the indices of an Eulerian circuit 𝐹, 𝑃 results in an Eulerian circuit 𝐻, 𝑄. (Contributed by AV, 15-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eucrctshift.v 𝑉 = (Vtx‘𝐺)
eucrctshift.i 𝐼 = (iEdg‘𝐺)
eucrctshift.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrctshift.n 𝑁 = (♯‘𝐹)
eucrctshift.s (𝜑𝑆 ∈ (0..^𝑁))
eucrctshift.h 𝐻 = (𝐹 cyclShift 𝑆)
eucrctshift.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
eucrctshift.e (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eucrctshift (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝑥,𝐼   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem eucrctshift
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eucrctshift.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eucrctshift.i . . . . 5 𝐼 = (iEdg‘𝐺)
3 eucrctshift.c . . . . 5 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 eucrctshift.n . . . . 5 𝑁 = (♯‘𝐹)
5 eucrctshift.s . . . . 5 (𝜑𝑆 ∈ (0..^𝑁))
6 eucrctshift.h . . . . 5 𝐻 = (𝐹 cyclShift 𝑆)
7 eucrctshift.q . . . . 5 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshtrl 28188 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
9 simpr 485 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻(Trails‘𝐺)𝑄)
10 eucrctshift.e . . . . . . . 8 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
112eupthf1o 28568 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1210, 11syl 17 . . . . . . 7 (𝜑𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1312adantr 481 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
14 trliswlk 28065 . . . . . . . . 9 (𝐻(Trails‘𝐺)𝑄𝐻(Walks‘𝐺)𝑄)
152wlkf 27981 . . . . . . . . 9 (𝐻(Walks‘𝐺)𝑄𝐻 ∈ Word dom 𝐼)
16 wrdf 14222 . . . . . . . . 9 (𝐻 ∈ Word dom 𝐼𝐻:(0..^(♯‘𝐻))⟶dom 𝐼)
1714, 15, 163syl 18 . . . . . . . 8 (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))⟶dom 𝐼)
18 df-f1o 6440 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
19 dffo3 6978 . . . . . . . . . . 11 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦)))
20 crctiswlk 28164 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
212wlkf 27981 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
22 lencl 14236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
234oveq2i 7286 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0..^𝑁) = (0..^(♯‘𝐹))
2423eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (0..^𝑁) ↔ 𝑆 ∈ (0..^(♯‘𝐹)))
25 elfzonn0 13432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℕ0)
2625adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℕ0)
27 elfzonn0 13432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℕ0)
28 nn0sub 12283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
2926, 27, 28syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
3029biimpac 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ ℕ0)
31 elfzo0 13428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) ↔ (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
32 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3331, 32sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3433ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℕ)
35 nn0re 12242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
3635ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℝ)
37 nnre 11980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℝ)
3837adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℝ)
3938adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
40 elfzoelz 13387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℤ)
4140zred 12426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℝ)
42 readdcl 10954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4338, 41, 42syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4436, 39, 433jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ ∧ ((♯‘𝐹) + 𝑆) ∈ ℝ))
45 elfzole1 13395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ (0..^(♯‘𝐹)) → 0 ≤ 𝑆)
4645adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 0 ≤ 𝑆)
47 addge01 11485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4838, 41, 47syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4946, 48mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆))
5044, 49lelttrdi 11137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5150ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆))))
5251com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑦 < (♯‘𝐹) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆))))
53523impia 1116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5453adantld 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5554imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 < ((♯‘𝐹) + 𝑆))
56353ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
5756adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℝ)
5841ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑆 ∈ ℝ)
59 elfzoel2 13386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
6059zred 12426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
6160ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℝ)
6257, 58, 61ltsubaddd 11571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) < (♯‘𝐹) ↔ 𝑦 < ((♯‘𝐹) + 𝑆)))
6355, 62mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
6463ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6531, 64sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6665impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹))
6766adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
68 elfzo0 13428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦𝑆) ∈ (0..^(♯‘𝐹)) ↔ ((𝑦𝑆) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑦𝑆) < (♯‘𝐹)))
6930, 34, 67, 68syl3anbrc 1342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ (0..^(♯‘𝐹)))
70 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑦𝑆) → (𝑧 + 𝑆) = ((𝑦𝑆) + 𝑆))
7170oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑦𝑆) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)))
7240zcnd 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℂ)
7372adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
74 elfzoelz 13387 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
7574zcnd 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
7673, 75anim12ci 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
7776adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
78 npcan 11230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝑦𝑆) + 𝑆) = 𝑦)
7977, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + 𝑆) = 𝑦)
8079oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = (𝑦 mod (♯‘𝐹)))
81 zmodidfzoimp 13621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8281ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8380, 82eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = 𝑦)
8471, 83sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
8584eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
8669, 85rspcedeq2vd 3567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
87 elfzo0 13428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑆 ∈ (0..^(♯‘𝐹)) ↔ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)))
88 nn0cn 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8988ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℂ)
90 nn0cn 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ ℕ0𝑆 ∈ ℂ)
91903ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℂ)
9291adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑆 ∈ ℂ)
93 nncn 11981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
94933ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℂ)
9594adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9689, 92, 95subadd23d 11354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) = (𝑦 + ((♯‘𝐹) − 𝑆)))
97 simpll 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℕ0)
98 nn0z 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑆 ∈ ℕ0𝑆 ∈ ℤ)
99 nnz 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℤ)
100 znnsub 12366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑆 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
10198, 99, 100syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
102101biimp3a 1468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
103102adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
104103nnnn0d 12293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ0)
10597, 104nn0addcld 12297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦 + ((♯‘𝐹) − 𝑆)) ∈ ℕ0)
10696, 105eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
107106adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
108 simplr2 1215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (♯‘𝐹) ∈ ℕ)
10988adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℂ)
110 subcl 11220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑦𝑆) ∈ ℂ)
111109, 91, 110syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℂ)
11295, 111jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
113112adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
114 addcom 11161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
11635adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
117 nn0re 12242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
1181173ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℝ)
119 ltnle 11054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 ↔ ¬ 𝑆𝑦))
120 simpl 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑦 ∈ ℝ)
121 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
122120, 121sublt0d 11601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((𝑦𝑆) < 0 ↔ 𝑦 < 𝑆))
123122biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 → (𝑦𝑆) < 0))
124119, 123sylbird 259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
125116, 118, 124syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
126125imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (𝑦𝑆) < 0)
127 resubcl 11285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦𝑆) ∈ ℝ)
128116, 118, 127syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℝ)
129373ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
130129adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
131128, 130jca 512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
132131adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
133 ltaddneg 11190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
135126, 134mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹))
136115, 135eqbrtrrd 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))
137107, 108, 1363jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
138137exp31 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
1391383adant2 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
14087, 139syl5bi 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
141140adantld 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
14231, 141sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
143142impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))))
144143impcom 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
145 elfzo0 13428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)) ↔ (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
146144, 145sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
147 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → (𝑧 + 𝑆) = (((𝑦𝑆) + (♯‘𝐹)) + 𝑆))
148147oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)))
14973adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
15075adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
151 nn0cn 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
152151ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
153149, 150, 1523jca 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
154153adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
155 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑦 ∈ ℂ)
156 simp3 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (♯‘𝐹) ∈ ℂ)
157 simp1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑆 ∈ ℂ)
158155, 157, 156nppcand 11357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = (𝑦 + (♯‘𝐹)))
159155, 156, 158comraddd 11189 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
160154, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
161160oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)))
16231biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
163162ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
164 addmodid 13639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
165163, 164syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
166161, 165eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = 𝑦)
167148, 166sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
168167eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
169146, 168rspcedeq2vd 3567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
17086, 169pm2.61ian 809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
17123rexeqi 3347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) ↔ ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
172170, 171sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
173172exp31 420 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17424, 173syl5bi 241 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17522, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ Word dom 𝐼 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17620, 21, 1753syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹(Circuits‘𝐺)𝑃 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
1773, 5, 176sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
178177adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ dom 𝐼) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
179178imp 407 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
180179adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
181 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
182181reximi 3178 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
183180, 182syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
1843, 20, 213syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ Word dom 𝐼)
185184ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝐹 ∈ Word dom 𝐼)
186 elfzoelz 13387 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
1875, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ ℤ)
188187ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑆 ∈ ℤ)
18923eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^𝑁) ↔ 𝑧 ∈ (0..^(♯‘𝐹)))
190189biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ (0..^(♯‘𝐹)))
191 cshwidxmod 14516 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Word dom 𝐼𝑆 ∈ ℤ ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
192185, 188, 190, 191syl2an3an 1421 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
193192eqeq2d 2749 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
194193rexbidva 3225 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
195183, 194mpbird 256 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧))
1961, 2, 3, 4, 5, 6crctcshlem2 28183 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝐻) = 𝑁)
197196oveq2d 7291 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
198197ad3antrrr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (0..^(♯‘𝐻)) = (0..^𝑁))
199 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑖 = (𝐹𝑦))
2006fveq1i 6775 . . . . . . . . . . . . . . . . . . . . 21 (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧)
201200a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧))
202199, 201eqeq12d 2754 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝑖 = (𝐻𝑧) ↔ (𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
203198, 202rexeqbidv 3337 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
204195, 203mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
205204rexlimdva2 3216 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (∃𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
206205ralimdva 3108 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
207206impcom 408 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
208207anim1ci 616 . . . . . . . . . . . . 13 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
209 dffo3 6978 . . . . . . . . . . . . 13 (𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼 ↔ (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
210208, 209sylibr 233 . . . . . . . . . . . 12 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
211210exp31 420 . . . . . . . . . . 11 (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21219, 211simplbiim 505 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21318, 212simplbiim 505 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
214213com13 88 . . . . . . . 8 (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21517, 214syl 17 . . . . . . 7 (𝐻(Trails‘𝐺)𝑄 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
216215impcom 408 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
21713, 216mpd 15 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
2189, 217jca 512 . . . 4 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2198, 218mpdan 684 . . 3 (𝜑 → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2202iseupth 28565 . . 3 (𝐻(EulerPaths‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
221219, 220sylibr 233 . 2 (𝜑𝐻(EulerPaths‘𝐺)𝑄)
2221, 2, 3, 4, 5, 6, 7crctcsh 28189 . 2 (𝜑𝐻(Circuits‘𝐺)𝑄)
223221, 222jca 512 1 (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382   mod cmo 13589  chash 14044  Word cword 14217   cyclShift ccsh 14501  Vtxcvtx 27366  iEdgciedg 27367  Walkscwlks 27963  Trailsctrls 28058  Circuitsccrcts 28152  EulerPathsceupth 28561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502  df-wlks 27966  df-trls 28060  df-crcts 28154  df-eupth 28562
This theorem is referenced by:  eucrct2eupth  28609
  Copyright terms: Public domain W3C validator