Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrctshift Structured version   Visualization version   GIF version

Theorem eucrctshift 28038
 Description: Cyclically shifting the indices of an Eulerian circuit ⟨𝐹, 𝑃⟩ results in an Eulerian circuit ⟨𝐻, 𝑄⟩. (Contributed by AV, 15-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eucrctshift.v 𝑉 = (Vtx‘𝐺)
eucrctshift.i 𝐼 = (iEdg‘𝐺)
eucrctshift.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrctshift.n 𝑁 = (♯‘𝐹)
eucrctshift.s (𝜑𝑆 ∈ (0..^𝑁))
eucrctshift.h 𝐻 = (𝐹 cyclShift 𝑆)
eucrctshift.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
eucrctshift.e (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eucrctshift (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝑥,𝐼   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem eucrctshift
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eucrctshift.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eucrctshift.i . . . . 5 𝐼 = (iEdg‘𝐺)
3 eucrctshift.c . . . . 5 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 eucrctshift.n . . . . 5 𝑁 = (♯‘𝐹)
5 eucrctshift.s . . . . 5 (𝜑𝑆 ∈ (0..^𝑁))
6 eucrctshift.h . . . . 5 𝐻 = (𝐹 cyclShift 𝑆)
7 eucrctshift.q . . . . 5 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshtrl 27619 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
9 simpr 488 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻(Trails‘𝐺)𝑄)
10 eucrctshift.e . . . . . . . 8 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
112eupthf1o 27999 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1210, 11syl 17 . . . . . . 7 (𝜑𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1312adantr 484 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
14 trliswlk 27497 . . . . . . . . 9 (𝐻(Trails‘𝐺)𝑄𝐻(Walks‘𝐺)𝑄)
152wlkf 27414 . . . . . . . . 9 (𝐻(Walks‘𝐺)𝑄𝐻 ∈ Word dom 𝐼)
16 wrdf 13865 . . . . . . . . 9 (𝐻 ∈ Word dom 𝐼𝐻:(0..^(♯‘𝐻))⟶dom 𝐼)
1714, 15, 163syl 18 . . . . . . . 8 (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))⟶dom 𝐼)
18 df-f1o 6332 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
19 dffo3 6846 . . . . . . . . . . 11 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦)))
20 crctiswlk 27595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
212wlkf 27414 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
22 lencl 13879 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
234oveq2i 7147 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0..^𝑁) = (0..^(♯‘𝐹))
2423eleq2i 2881 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (0..^𝑁) ↔ 𝑆 ∈ (0..^(♯‘𝐹)))
25 elfzonn0 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℕ0)
2625adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℕ0)
27 elfzonn0 13080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℕ0)
28 nn0sub 11938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
2926, 27, 28syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
3029biimpac 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ ℕ0)
31 elfzo0 13076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) ↔ (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
32 simp2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3331, 32sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3433ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℕ)
35 nn0re 11897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
3635ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℝ)
37 nnre 11635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℝ)
3837adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℝ)
3938adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
40 elfzoelz 13036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℤ)
4140zred 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℝ)
42 readdcl 10612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4338, 41, 42syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4436, 39, 433jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ ∧ ((♯‘𝐹) + 𝑆) ∈ ℝ))
45 elfzole1 13044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ (0..^(♯‘𝐹)) → 0 ≤ 𝑆)
4645adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 0 ≤ 𝑆)
47 addge01 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4838, 41, 47syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4946, 48mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆))
5044, 49lelttrdi 10794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5150ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆))))
5251com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑦 < (♯‘𝐹) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆))))
53523impia 1114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5453adantld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5554imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 < ((♯‘𝐹) + 𝑆))
56353ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
5756adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℝ)
5841ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑆 ∈ ℝ)
59 elfzoel2 13035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
6059zred 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
6160ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℝ)
6257, 58, 61ltsubaddd 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) < (♯‘𝐹) ↔ 𝑦 < ((♯‘𝐹) + 𝑆)))
6355, 62mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
6463ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6531, 64sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6665impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹))
6766adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
68 elfzo0 13076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦𝑆) ∈ (0..^(♯‘𝐹)) ↔ ((𝑦𝑆) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑦𝑆) < (♯‘𝐹)))
6930, 34, 67, 68syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ (0..^(♯‘𝐹)))
70 oveq1 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑦𝑆) → (𝑧 + 𝑆) = ((𝑦𝑆) + 𝑆))
7170oveq1d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑦𝑆) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)))
7240zcnd 12079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℂ)
7372adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
74 elfzoelz 13036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
7574zcnd 12079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
7673, 75anim12ci 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
7776adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
78 npcan 10887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝑦𝑆) + 𝑆) = 𝑦)
7977, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + 𝑆) = 𝑦)
8079oveq1d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = (𝑦 mod (♯‘𝐹)))
81 zmodidfzoimp 13267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8281ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8380, 82eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = 𝑦)
8471, 83sylan9eqr 2855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
8584eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
8669, 85rspcedeq2vd 3578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
87 elfzo0 13076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑆 ∈ (0..^(♯‘𝐹)) ↔ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)))
88 nn0cn 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8988ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℂ)
90 nn0cn 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ ℕ0𝑆 ∈ ℂ)
91903ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℂ)
9291adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑆 ∈ ℂ)
93 nncn 11636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
94933ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℂ)
9594adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9689, 92, 95subadd23d 11011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) = (𝑦 + ((♯‘𝐹) − 𝑆)))
97 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℕ0)
98 nn0z 11996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑆 ∈ ℕ0𝑆 ∈ ℤ)
99 nnz 11995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℤ)
100 znnsub 12019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑆 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
10198, 99, 100syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
102101biimp3a 1466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
103102adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
104103nnnn0d 11946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ0)
10597, 104nn0addcld 11950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦 + ((♯‘𝐹) − 𝑆)) ∈ ℕ0)
10696, 105eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
107106adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
108 simplr2 1213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (♯‘𝐹) ∈ ℕ)
10988adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℂ)
110 subcl 10877 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑦𝑆) ∈ ℂ)
111109, 91, 110syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℂ)
11295, 111jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
113112adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
114 addcom 10818 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
11635adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
117 nn0re 11897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
1181173ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℝ)
119 ltnle 10712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 ↔ ¬ 𝑆𝑦))
120 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑦 ∈ ℝ)
121 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
122120, 121sublt0d 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((𝑦𝑆) < 0 ↔ 𝑦 < 𝑆))
123122biimprd 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 → (𝑦𝑆) < 0))
124119, 123sylbird 263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
125116, 118, 124syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
126125imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (𝑦𝑆) < 0)
127 resubcl 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦𝑆) ∈ ℝ)
128116, 118, 127syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℝ)
129373ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
130129adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
131128, 130jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
132131adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
133 ltaddneg 10847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
135126, 134mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹))
136115, 135eqbrtrrd 5055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))
137107, 108, 1363jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
138137exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
1391383adant2 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
14087, 139syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
141140adantld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
14231, 141sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
143142impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))))
144143impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
145 elfzo0 13076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)) ↔ (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
146144, 145sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
147 oveq1 7143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → (𝑧 + 𝑆) = (((𝑦𝑆) + (♯‘𝐹)) + 𝑆))
148147oveq1d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)))
14973adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
15075adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
151 nn0cn 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
152151ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
153149, 150, 1523jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
154153adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
155 simp2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑦 ∈ ℂ)
156 simp3 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (♯‘𝐹) ∈ ℂ)
157 simp1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑆 ∈ ℂ)
158155, 157, 156nppcand 11014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = (𝑦 + (♯‘𝐹)))
159155, 156, 158comraddd 10846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
160154, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
161160oveq1d 7151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)))
16231biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
163162ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
164 addmodid 13285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
165163, 164syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
166161, 165eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = 𝑦)
167148, 166sylan9eqr 2855 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
168167eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
169146, 168rspcedeq2vd 3578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
17086, 169pm2.61ian 811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
17123rexeqi 3363 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) ↔ ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
172170, 171sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
173172exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17424, 173syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17522, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ Word dom 𝐼 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17620, 21, 1753syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹(Circuits‘𝐺)𝑃 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
1773, 5, 176sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
178177adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ dom 𝐼) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
179178imp 410 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
180179adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
181 fveq2 6646 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
182181reximi 3206 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
183180, 182syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
1843, 20, 213syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ Word dom 𝐼)
185184ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝐹 ∈ Word dom 𝐼)
186 elfzoelz 13036 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
1875, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ ℤ)
188187ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑆 ∈ ℤ)
18923eleq2i 2881 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^𝑁) ↔ 𝑧 ∈ (0..^(♯‘𝐹)))
190189biimpi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ (0..^(♯‘𝐹)))
191 cshwidxmod 14159 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Word dom 𝐼𝑆 ∈ ℤ ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
192185, 188, 190, 191syl2an3an 1419 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
193192eqeq2d 2809 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
194193rexbidva 3255 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
195183, 194mpbird 260 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧))
1961, 2, 3, 4, 5, 6crctcshlem2 27614 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝐻) = 𝑁)
197196oveq2d 7152 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
198197ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (0..^(♯‘𝐻)) = (0..^𝑁))
199 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑖 = (𝐹𝑦))
2006fveq1i 6647 . . . . . . . . . . . . . . . . . . . . 21 (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧)
201200a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧))
202199, 201eqeq12d 2814 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝑖 = (𝐻𝑧) ↔ (𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
203198, 202rexeqbidv 3355 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
204195, 203mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
205204rexlimdva2 3246 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (∃𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
206205ralimdva 3144 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
207206impcom 411 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
208207anim1ci 618 . . . . . . . . . . . . 13 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
209 dffo3 6846 . . . . . . . . . . . . 13 (𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼 ↔ (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
210208, 209sylibr 237 . . . . . . . . . . . 12 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
211210exp31 423 . . . . . . . . . . 11 (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21219, 211simplbiim 508 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21318, 212simplbiim 508 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
214213com13 88 . . . . . . . 8 (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21517, 214syl 17 . . . . . . 7 (𝐻(Trails‘𝐺)𝑄 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
216215impcom 411 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
21713, 216mpd 15 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
2189, 217jca 515 . . . 4 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2198, 218mpdan 686 . . 3 (𝜑 → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2202iseupth 27996 . . 3 (𝐻(EulerPaths‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
221219, 220sylibr 237 . 2 (𝜑𝐻(EulerPaths‘𝐺)𝑄)
2221, 2, 3, 4, 5, 6, 7crctcsh 27620 . 2 (𝜑𝐻(Circuits‘𝐺)𝑄)
223221, 222jca 515 1 (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  ifcif 4425   class class class wbr 5031   ↦ cmpt 5111  dom cdm 5520  ⟶wf 6321  –1-1→wf1 6322  –onto→wfo 6323  –1-1-onto→wf1o 6324  ‘cfv 6325  (class class class)co 7136  ℂcc 10527  ℝcr 10528  0cc0 10529   + caddc 10532   < clt 10667   ≤ cle 10668   − cmin 10862  ℕcn 11628  ℕ0cn0 11888  ℤcz 11972  ...cfz 12888  ..^cfzo 13031   mod cmo 13235  ♯chash 13689  Word cword 13860   cyclShift ccsh 14144  Vtxcvtx 26799  iEdgciedg 26800  Walkscwlks 27396  Trailsctrls 27490  Circuitsccrcts 27583  EulerPathsceupth 27992 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-inf 8894  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-ico 12735  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-hash 13690  df-word 13861  df-concat 13917  df-substr 13997  df-pfx 14027  df-csh 14145  df-wlks 27399  df-trls 27492  df-crcts 27585  df-eupth 27993 This theorem is referenced by:  eucrct2eupth  28040
 Copyright terms: Public domain W3C validator