MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrctshift Structured version   Visualization version   GIF version

Theorem eucrctshift 30178
Description: Cyclically shifting the indices of an Eulerian circuit 𝐹, 𝑃 results in an Eulerian circuit 𝐻, 𝑄. (Contributed by AV, 15-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eucrctshift.v 𝑉 = (Vtx‘𝐺)
eucrctshift.i 𝐼 = (iEdg‘𝐺)
eucrctshift.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrctshift.n 𝑁 = (♯‘𝐹)
eucrctshift.s (𝜑𝑆 ∈ (0..^𝑁))
eucrctshift.h 𝐻 = (𝐹 cyclShift 𝑆)
eucrctshift.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
eucrctshift.e (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eucrctshift (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝑥,𝐼   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem eucrctshift
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eucrctshift.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eucrctshift.i . . . . 5 𝐼 = (iEdg‘𝐺)
3 eucrctshift.c . . . . 5 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 eucrctshift.n . . . . 5 𝑁 = (♯‘𝐹)
5 eucrctshift.s . . . . 5 (𝜑𝑆 ∈ (0..^𝑁))
6 eucrctshift.h . . . . 5 𝐻 = (𝐹 cyclShift 𝑆)
7 eucrctshift.q . . . . 5 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshtrl 29759 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
9 simpr 484 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻(Trails‘𝐺)𝑄)
10 eucrctshift.e . . . . . . . 8 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
112eupthf1o 30139 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1210, 11syl 17 . . . . . . 7 (𝜑𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1312adantr 480 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
14 trliswlk 29631 . . . . . . . 8 (𝐻(Trails‘𝐺)𝑄𝐻(Walks‘𝐺)𝑄)
152wlkf 29548 . . . . . . . 8 (𝐻(Walks‘𝐺)𝑄𝐻 ∈ Word dom 𝐼)
16 wrdf 14489 . . . . . . . 8 (𝐻 ∈ Word dom 𝐼𝐻:(0..^(♯‘𝐻))⟶dom 𝐼)
17 df-f1o 6520 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
18 dffo3 7076 . . . . . . . . . . 11 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦)))
19 crctiswlk 29732 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
202wlkf 29548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
21 lencl 14504 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
224oveq2i 7400 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0..^𝑁) = (0..^(♯‘𝐹))
2322eleq2i 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑆 ∈ (0..^𝑁) ↔ 𝑆 ∈ (0..^(♯‘𝐹)))
24 elfzonn0 13674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℕ0)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℕ0)
26 elfzonn0 13674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℕ0)
27 nn0sub 12498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑆 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
2825, 26, 27syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
2928biimpac 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ ℕ0)
30 elfzo0 13667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0..^(♯‘𝐹)) ↔ (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
31 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3230, 31sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3332ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℕ)
34 nn0re 12457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℝ)
36 nnre 12194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℝ)
3736adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℝ)
3837adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
39 elfzoelz 13626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℤ)
4039zred 12644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℝ)
41 readdcl 11157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4237, 40, 41syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4335, 38, 423jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ ∧ ((♯‘𝐹) + 𝑆) ∈ ℝ))
44 elfzole1 13634 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑆 ∈ (0..^(♯‘𝐹)) → 0 ≤ 𝑆)
4544adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 0 ≤ 𝑆)
46 addge01 11694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4737, 40, 46syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4845, 47mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆))
4943, 48lelttrdi 11342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5049ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆))))
5150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑦 < (♯‘𝐹) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆))))
52513impia 1117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5352adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5453imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 < ((♯‘𝐹) + 𝑆))
55343ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℝ)
5740ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑆 ∈ ℝ)
58 elfzoel2 13625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
5958zred 12644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
6059ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℝ)
6156, 57, 60ltsubaddd 11780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) < (♯‘𝐹) ↔ 𝑦 < ((♯‘𝐹) + 𝑆)))
6254, 61mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
6362ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6430, 63sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6564impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹))
6665adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
67 elfzo0 13667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑦𝑆) ∈ (0..^(♯‘𝐹)) ↔ ((𝑦𝑆) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑦𝑆) < (♯‘𝐹)))
6829, 33, 66, 67syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ (0..^(♯‘𝐹)))
69 oveq1 7396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑦𝑆) → (𝑧 + 𝑆) = ((𝑦𝑆) + 𝑆))
7069oveq1d 7404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = (𝑦𝑆) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)))
7139zcnd 12645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℂ)
7271adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
73 elfzoelz 13626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
7473zcnd 12645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
7572, 74anim12ci 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
77 npcan 11436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝑦𝑆) + 𝑆) = 𝑦)
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + 𝑆) = 𝑦)
7978oveq1d 7404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = (𝑦 mod (♯‘𝐹)))
80 zmodidfzoimp 13869 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8180ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8279, 81eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = 𝑦)
8370, 82sylan9eqr 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
8483eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
8568, 84rspcedeq2vd 3599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
86 elfzo0 13667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑆 ∈ (0..^(♯‘𝐹)) ↔ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)))
87 nn0cn 12458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8887ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℂ)
89 nn0cn 12458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑆 ∈ ℕ0𝑆 ∈ ℂ)
90893ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℂ)
9190adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑆 ∈ ℂ)
92 nncn 12195 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
93923ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℂ)
9493adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9588, 91, 94subadd23d 11561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) = (𝑦 + ((♯‘𝐹) − 𝑆)))
96 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℕ0)
97 nn0z 12560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑆 ∈ ℕ0𝑆 ∈ ℤ)
98 nnz 12556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℤ)
99 znnsub 12585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑆 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
10097, 98, 99syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
101100biimp3a 1471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
102101adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
103102nnnn0d 12509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ0)
10496, 103nn0addcld 12513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦 + ((♯‘𝐹) − 𝑆)) ∈ ℕ0)
10595, 104eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
106105adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
107 simplr2 1217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (♯‘𝐹) ∈ ℕ)
10887adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℂ)
109 subcl 11426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑦𝑆) ∈ ℂ)
110108, 90, 109syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℂ)
11194, 110jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
112111adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
113 addcom 11366 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
114112, 113syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
11534adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
116 nn0re 12457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
1171163ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℝ)
118 ltnle 11259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 ↔ ¬ 𝑆𝑦))
119 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑦 ∈ ℝ)
120 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
121119, 120sublt0d 11810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((𝑦𝑆) < 0 ↔ 𝑦 < 𝑆))
122121biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 → (𝑦𝑆) < 0))
123118, 122sylbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
124115, 117, 123syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
125124imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (𝑦𝑆) < 0)
126 resubcl 11492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦𝑆) ∈ ℝ)
127115, 117, 126syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℝ)
128363ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
129128adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
130127, 129jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
131130adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
132 ltaddneg 11396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
133131, 132syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
134125, 133mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹))
135114, 134eqbrtrrd 5133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))
136106, 107, 1353jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
137136exp31 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
1381373adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
13986, 138biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
140139adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
14130, 140sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
142141impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))))
143142impcom 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
144 elfzo0 13667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)) ↔ (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
145143, 144sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
146 oveq1 7396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → (𝑧 + 𝑆) = (((𝑦𝑆) + (♯‘𝐹)) + 𝑆))
147146oveq1d 7404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)))
14872adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
14974adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
150 nn0cn 12458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
151150ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
152148, 149, 1513jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
153152adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
154 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑦 ∈ ℂ)
155 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (♯‘𝐹) ∈ ℂ)
156 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑆 ∈ ℂ)
157154, 156, 155nppcand 11564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = (𝑦 + (♯‘𝐹)))
158154, 155, 157comraddd 11394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
159153, 158syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
160159oveq1d 7404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)))
16130biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
162161ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
163 addmodid 13890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
165160, 164eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = 𝑦)
166147, 165sylan9eqr 2787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
167166eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
168145, 167rspcedeq2vd 3599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
16985, 168pm2.61ian 811 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
17022rexeqi 3300 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) ↔ ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
171169, 170sylibr 234 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
172171exp31 419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17323, 172biimtrid 242 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17419, 20, 21, 1734syl 19 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹(Circuits‘𝐺)𝑃 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
1753, 5, 174sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
176175adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ dom 𝐼) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
177176imp 406 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
178177adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
179 fveq2 6860 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
180179reximi 3068 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
181178, 180syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
1823, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ Word dom 𝐼)
183182ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝐹 ∈ Word dom 𝐼)
184 elfzoelz 13626 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
1855, 184syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ ℤ)
186185ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑆 ∈ ℤ)
18722eleq2i 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^𝑁) ↔ 𝑧 ∈ (0..^(♯‘𝐹)))
188187biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ (0..^(♯‘𝐹)))
189 cshwidxmod 14774 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Word dom 𝐼𝑆 ∈ ℤ ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
190183, 186, 188, 189syl2an3an 1424 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
191190eqeq2d 2741 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
192191rexbidva 3156 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
193181, 192mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧))
1941, 2, 3, 4, 5, 6crctcshlem2 29754 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝐻) = 𝑁)
195194oveq2d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
196195ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (0..^(♯‘𝐻)) = (0..^𝑁))
197 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑖 = (𝐹𝑦))
1986fveq1i 6861 . . . . . . . . . . . . . . . . . . . . 21 (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧)
199198a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧))
200197, 199eqeq12d 2746 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝑖 = (𝐻𝑧) ↔ (𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
201196, 200rexeqbidv 3322 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
202193, 201mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
203202rexlimdva2 3137 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (∃𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
204203ralimdva 3146 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
205204impcom 407 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
206205anim1ci 616 . . . . . . . . . . . . 13 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
207 dffo3 7076 . . . . . . . . . . . . 13 (𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼 ↔ (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
208206, 207sylibr 234 . . . . . . . . . . . 12 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
209208exp31 419 . . . . . . . . . . 11 (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21018, 209simplbiim 504 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21117, 210simplbiim 504 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
212211com13 88 . . . . . . . 8 (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21314, 15, 16, 2124syl 19 . . . . . . 7 (𝐻(Trails‘𝐺)𝑄 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
214213impcom 407 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
21513, 214mpd 15 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
2169, 215jca 511 . . . 4 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2178, 216mpdan 687 . . 3 (𝜑 → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2182iseupth 30136 . . 3 (𝐻(EulerPaths‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
219217, 218sylibr 234 . 2 (𝜑𝐻(EulerPaths‘𝐺)𝑄)
2201, 2, 3, 4, 5, 6, 7crctcsh 29760 . 2 (𝜑𝐻(Circuits‘𝐺)𝑄)
221219, 220jca 511 1 (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ifcif 4490   class class class wbr 5109  cmpt 5190  dom cdm 5640  wf 6509  1-1wf1 6510  ontowfo 6511  1-1-ontowf1o 6512  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074   + caddc 11077   < clt 11214  cle 11215  cmin 11411  cn 12187  0cn0 12448  cz 12535  ...cfz 13474  ..^cfzo 13621   mod cmo 13837  chash 14301  Word cword 14484   cyclShift ccsh 14759  Vtxcvtx 28929  iEdgciedg 28930  Walkscwlks 29530  Trailsctrls 29624  Circuitsccrcts 29720  EulerPathsceupth 30132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-ico 13318  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-hash 14302  df-word 14485  df-concat 14542  df-substr 14612  df-pfx 14642  df-csh 14760  df-wlks 29533  df-trls 29626  df-crcts 29722  df-eupth 30133
This theorem is referenced by:  eucrct2eupth  30180
  Copyright terms: Public domain W3C validator