MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucrctshift Structured version   Visualization version   GIF version

Theorem eucrctshift 28326
Description: Cyclically shifting the indices of an Eulerian circuit 𝐹, 𝑃 results in an Eulerian circuit 𝐻, 𝑄. (Contributed by AV, 15-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eucrctshift.v 𝑉 = (Vtx‘𝐺)
eucrctshift.i 𝐼 = (iEdg‘𝐺)
eucrctshift.c (𝜑𝐹(Circuits‘𝐺)𝑃)
eucrctshift.n 𝑁 = (♯‘𝐹)
eucrctshift.s (𝜑𝑆 ∈ (0..^𝑁))
eucrctshift.h 𝐻 = (𝐹 cyclShift 𝑆)
eucrctshift.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
eucrctshift.e (𝜑𝐹(EulerPaths‘𝐺)𝑃)
Assertion
Ref Expression
eucrctshift (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐻   𝑥,𝐼   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem eucrctshift
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eucrctshift.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 eucrctshift.i . . . . 5 𝐼 = (iEdg‘𝐺)
3 eucrctshift.c . . . . 5 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 eucrctshift.n . . . . 5 𝑁 = (♯‘𝐹)
5 eucrctshift.s . . . . 5 (𝜑𝑆 ∈ (0..^𝑁))
6 eucrctshift.h . . . . 5 𝐻 = (𝐹 cyclShift 𝑆)
7 eucrctshift.q . . . . 5 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshtrl 27907 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
9 simpr 488 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻(Trails‘𝐺)𝑄)
10 eucrctshift.e . . . . . . . 8 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
112eupthf1o 28287 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1210, 11syl 17 . . . . . . 7 (𝜑𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
1312adantr 484 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼)
14 trliswlk 27785 . . . . . . . . 9 (𝐻(Trails‘𝐺)𝑄𝐻(Walks‘𝐺)𝑄)
152wlkf 27702 . . . . . . . . 9 (𝐻(Walks‘𝐺)𝑄𝐻 ∈ Word dom 𝐼)
16 wrdf 14074 . . . . . . . . 9 (𝐻 ∈ Word dom 𝐼𝐻:(0..^(♯‘𝐻))⟶dom 𝐼)
1714, 15, 163syl 18 . . . . . . . 8 (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))⟶dom 𝐼)
18 df-f1o 6387 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼))
19 dffo3 6921 . . . . . . . . . . 11 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 ↔ (𝐹:(0..^(♯‘𝐹))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦)))
20 crctiswlk 27883 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Circuits‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
212wlkf 27702 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
22 lencl 14088 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
234oveq2i 7224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0..^𝑁) = (0..^(♯‘𝐹))
2423eleq2i 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (0..^𝑁) ↔ 𝑆 ∈ (0..^(♯‘𝐹)))
25 elfzonn0 13287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℕ0)
2625adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℕ0)
27 elfzonn0 13287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℕ0)
28 nn0sub 12140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
2926, 27, 28syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆𝑦 ↔ (𝑦𝑆) ∈ ℕ0))
3029biimpac 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ ℕ0)
31 elfzo0 13283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) ↔ (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
32 simp2 1139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3331, 32sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ)
3433ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℕ)
35 nn0re 12099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
3635ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℝ)
37 nnre 11837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℝ)
3837adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℝ)
3938adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
40 elfzoelz 13243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℤ)
4140zred 12282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℝ)
42 readdcl 10812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4338, 41, 42syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) + 𝑆) ∈ ℝ)
4436, 39, 433jca 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ ∧ ((♯‘𝐹) + 𝑆) ∈ ℝ))
45 elfzole1 13251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ (0..^(♯‘𝐹)) → 0 ≤ 𝑆)
4645adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → 0 ≤ 𝑆)
47 addge01 11342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((♯‘𝐹) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4838, 41, 47syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (0 ≤ 𝑆 ↔ (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆)))
4946, 48mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ≤ ((♯‘𝐹) + 𝑆))
5044, 49lelttrdi 10994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) ∧ 𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5150ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 < (♯‘𝐹) → 𝑦 < ((♯‘𝐹) + 𝑆))))
5251com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑦 < (♯‘𝐹) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆))))
53523impia 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5453adantld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑦 < ((♯‘𝐹) + 𝑆)))
5554imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 < ((♯‘𝐹) + 𝑆))
56353ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
5756adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℝ)
5841ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → 𝑆 ∈ ℝ)
59 elfzoel2 13242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℤ)
6059zred 12282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑆 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
6160ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (♯‘𝐹) ∈ ℝ)
6257, 58, 61ltsubaddd 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) < (♯‘𝐹) ↔ 𝑦 < ((♯‘𝐹) + 𝑆)))
6355, 62mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
6463ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6531, 64sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹)))
6665impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦𝑆) < (♯‘𝐹))
6766adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) < (♯‘𝐹))
68 elfzo0 13283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑦𝑆) ∈ (0..^(♯‘𝐹)) ↔ ((𝑦𝑆) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑦𝑆) < (♯‘𝐹)))
6930, 34, 67, 68syl3anbrc 1345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦𝑆) ∈ (0..^(♯‘𝐹)))
70 oveq1 7220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑦𝑆) → (𝑧 + 𝑆) = ((𝑦𝑆) + 𝑆))
7170oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑦𝑆) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)))
7240zcnd 12283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑆 ∈ (0..^(♯‘𝐹)) → 𝑆 ∈ ℂ)
7372adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
74 elfzoelz 13243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
7574zcnd 12283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
7673, 75anim12ci 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
7776adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ))
78 npcan 11087 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → ((𝑦𝑆) + 𝑆) = 𝑦)
7977, 78syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + 𝑆) = 𝑦)
8079oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = (𝑦 mod (♯‘𝐹)))
81 zmodidfzoimp 13474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8281ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 mod (♯‘𝐹)) = 𝑦)
8380, 82eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + 𝑆) mod (♯‘𝐹)) = 𝑦)
8471, 83sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
8584eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = (𝑦𝑆)) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
8669, 85rspcedeq2vd 3544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
87 elfzo0 13283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑆 ∈ (0..^(♯‘𝐹)) ↔ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)))
88 nn0cn 12100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
8988ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℂ)
90 nn0cn 12100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ ℕ0𝑆 ∈ ℂ)
91903ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℂ)
9291adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑆 ∈ ℂ)
93 nncn 11838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℂ)
94933ad2ant2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℂ)
9594adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
9689, 92, 95subadd23d 11211 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) = (𝑦 + ((♯‘𝐹) − 𝑆)))
97 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → 𝑦 ∈ ℕ0)
98 nn0z 12200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 (𝑆 ∈ ℕ0𝑆 ∈ ℤ)
99 nnz 12199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℤ)
100 znnsub 12223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑆 ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
10198, 99, 100syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 < (♯‘𝐹) ↔ ((♯‘𝐹) − 𝑆) ∈ ℕ))
102101biimp3a 1471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
103102adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ)
104103nnnn0d 12150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) − 𝑆) ∈ ℕ0)
10597, 104nn0addcld 12154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦 + ((♯‘𝐹) − 𝑆)) ∈ ℕ0)
10696, 105eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
107106adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0)
108 simplr2 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (♯‘𝐹) ∈ ℕ)
10988adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℂ)
110 subcl 11077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℂ ∧ 𝑆 ∈ ℂ) → (𝑦𝑆) ∈ ℂ)
111109, 91, 110syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℂ)
11295, 111jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
113112adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ))
114 addcom 11018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((♯‘𝐹) ∈ ℂ ∧ (𝑦𝑆) ∈ ℂ) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) = ((𝑦𝑆) + (♯‘𝐹)))
11635adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → 𝑦 ∈ ℝ)
117 nn0re 12099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
1181173ad2ant1 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → 𝑆 ∈ ℝ)
119 ltnle 10912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 ↔ ¬ 𝑆𝑦))
120 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑦 ∈ ℝ)
121 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
122120, 121sublt0d 11458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → ((𝑦𝑆) < 0 ↔ 𝑦 < 𝑆))
123122biimprd 251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦 < 𝑆 → (𝑦𝑆) < 0))
124119, 123sylbird 263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
125116, 118, 124syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (¬ 𝑆𝑦 → (𝑦𝑆) < 0))
126125imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (𝑦𝑆) < 0)
127 resubcl 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑦 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑦𝑆) ∈ ℝ)
128116, 118, 127syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (𝑦𝑆) ∈ ℝ)
129373ad2ant2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℝ)
130129adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → (♯‘𝐹) ∈ ℝ)
131128, 130jca 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
132131adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ))
133 ltaddneg 11047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑦𝑆) ∈ ℝ ∧ (♯‘𝐹) ∈ ℝ) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) < 0 ↔ ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹)))
135126, 134mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((♯‘𝐹) + (𝑦𝑆)) < (♯‘𝐹))
136115, 135eqbrtrrd 5077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))
137107, 108, 1363jca 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) ∧ (𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹))) ∧ ¬ 𝑆𝑦) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
138137exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑦 ∈ ℕ0𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
1391383adant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → ((𝑆 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑆 < (♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
14087, 139syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (𝑆 ∈ (0..^(♯‘𝐹)) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
141140adantld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
14231, 141sylbi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 ∈ (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))))
143142impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (¬ 𝑆𝑦 → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹))))
144143impcom 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
145 elfzo0 13283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)) ↔ (((𝑦𝑆) + (♯‘𝐹)) ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ ((𝑦𝑆) + (♯‘𝐹)) < (♯‘𝐹)))
146144, 145sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((𝑦𝑆) + (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
147 oveq1 7220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → (𝑧 + 𝑆) = (((𝑦𝑆) + (♯‘𝐹)) + 𝑆))
148147oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = ((𝑦𝑆) + (♯‘𝐹)) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)))
14973adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑆 ∈ ℂ)
15075adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
151 nn0cn 12100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
152151ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℂ)
153149, 150, 1523jca 1130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
154153adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ))
155 simp2 1139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑦 ∈ ℂ)
156 simp3 1140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (♯‘𝐹) ∈ ℂ)
157 simp1 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → 𝑆 ∈ ℂ)
158155, 157, 156nppcand 11214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = (𝑦 + (♯‘𝐹)))
159155, 156, 158comraddd 11046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑆 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (♯‘𝐹) ∈ ℂ) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
160154, 159syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((𝑦𝑆) + (♯‘𝐹)) + 𝑆) = ((♯‘𝐹) + 𝑦))
161160oveq1d 7228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)))
16231biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
163162ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)))
164 addmodid 13492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑦 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑦 < (♯‘𝐹)) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
165163, 164syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → (((♯‘𝐹) + 𝑦) mod (♯‘𝐹)) = 𝑦)
166161, 165eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ((((𝑦𝑆) + (♯‘𝐹)) + 𝑆) mod (♯‘𝐹)) = 𝑦)
167148, 166sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → ((𝑧 + 𝑆) mod (♯‘𝐹)) = 𝑦)
168167eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) ∧ 𝑧 = ((𝑦𝑆) + (♯‘𝐹))) → 𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
169146, 168rspcedeq2vd 3544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((¬ 𝑆𝑦 ∧ (((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹)))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
17086, 169pm2.61ian 812 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
17123rexeqi 3324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) ↔ ∃𝑧 ∈ (0..^(♯‘𝐹))𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
172170, 171sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((♯‘𝐹) ∈ ℕ0𝑆 ∈ (0..^(♯‘𝐹))) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
173172exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^(♯‘𝐹)) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17424, 173syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝐹) ∈ ℕ0 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17522, 174syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ Word dom 𝐼 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
17620, 21, 1753syl 18 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹(Circuits‘𝐺)𝑃 → (𝑆 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))))
1773, 5, 176sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
178177adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ dom 𝐼) → (𝑦 ∈ (0..^(♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹))))
179178imp 410 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
180179adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)))
181 fveq2 6717 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
182181reximi 3166 . . . . . . . . . . . . . . . . . . . 20 (∃𝑧 ∈ (0..^𝑁)𝑦 = ((𝑧 + 𝑆) mod (♯‘𝐹)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
183180, 182syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
1843, 20, 213syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐹 ∈ Word dom 𝐼)
185184ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝐹 ∈ Word dom 𝐼)
186 elfzoelz 13243 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
1875, 186syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑆 ∈ ℤ)
188187ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑆 ∈ ℤ)
18923eleq2i 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^𝑁) ↔ 𝑧 ∈ (0..^(♯‘𝐹)))
190189biimpi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (0..^𝑁) → 𝑧 ∈ (0..^(♯‘𝐹)))
191 cshwidxmod 14368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ Word dom 𝐼𝑆 ∈ ℤ ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
192185, 188, 190, 191syl2an3an 1424 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝑆)‘𝑧) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹))))
193192eqeq2d 2748 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) ∧ 𝑧 ∈ (0..^𝑁)) → ((𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ (𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
194193rexbidva 3215 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = (𝐹‘((𝑧 + 𝑆) mod (♯‘𝐹)))))
195183, 194mpbird 260 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧))
1961, 2, 3, 4, 5, 6crctcshlem2 27902 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (♯‘𝐻) = 𝑁)
197196oveq2d 7229 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (0..^(♯‘𝐻)) = (0..^𝑁))
198197ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (0..^(♯‘𝐻)) = (0..^𝑁))
199 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → 𝑖 = (𝐹𝑦))
2006fveq1i 6718 . . . . . . . . . . . . . . . . . . . . 21 (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧)
201200a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝐻𝑧) = ((𝐹 cyclShift 𝑆)‘𝑧))
202199, 201eqeq12d 2753 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (𝑖 = (𝐻𝑧) ↔ (𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
203198, 202rexeqbidv 3314 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → (∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧) ↔ ∃𝑧 ∈ (0..^𝑁)(𝐹𝑦) = ((𝐹 cyclShift 𝑆)‘𝑧)))
204195, 203mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ dom 𝐼) ∧ 𝑦 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 = (𝐹𝑦)) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
205204rexlimdva2 3206 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → (∃𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∃𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
206205ralimdva 3100 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
207206impcom 411 . . . . . . . . . . . . . 14 ((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) → ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧))
208207anim1ci 619 . . . . . . . . . . . . 13 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
209 dffo3 6921 . . . . . . . . . . . . 13 (𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼 ↔ (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 ∧ ∀𝑖 ∈ dom 𝐼𝑧 ∈ (0..^(♯‘𝐻))𝑖 = (𝐻𝑧)))
210208, 209sylibr 237 . . . . . . . . . . . 12 (((∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) ∧ 𝜑) ∧ 𝐻:(0..^(♯‘𝐻))⟶dom 𝐼) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
211210exp31 423 . . . . . . . . . . 11 (∀𝑖 ∈ dom 𝐼𝑦 ∈ (0..^(♯‘𝐹))𝑖 = (𝐹𝑦) → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21219, 211simplbiim 508 . . . . . . . . . 10 (𝐹:(0..^(♯‘𝐹))–onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21318, 212simplbiim 508 . . . . . . . . 9 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼 → (𝜑 → (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
214213com13 88 . . . . . . . 8 (𝐻:(0..^(♯‘𝐻))⟶dom 𝐼 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
21517, 214syl 17 . . . . . . 7 (𝐻(Trails‘𝐺)𝑄 → (𝜑 → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)))
216215impcom 411 . . . . . 6 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
21713, 216mpd 15 . . . . 5 ((𝜑𝐻(Trails‘𝐺)𝑄) → 𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼)
2189, 217jca 515 . . . 4 ((𝜑𝐻(Trails‘𝐺)𝑄) → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2198, 218mpdan 687 . . 3 (𝜑 → (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
2202iseupth 28284 . . 3 (𝐻(EulerPaths‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄𝐻:(0..^(♯‘𝐻))–onto→dom 𝐼))
221219, 220sylibr 237 . 2 (𝜑𝐻(EulerPaths‘𝐺)𝑄)
2221, 2, 3, 4, 5, 6, 7crctcsh 27908 . 2 (𝜑𝐻(Circuits‘𝐺)𝑄)
223221, 222jca 515 1 (𝜑 → (𝐻(EulerPaths‘𝐺)𝑄𝐻(Circuits‘𝐺)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  ifcif 4439   class class class wbr 5053  cmpt 5135  dom cdm 5551  wf 6376  1-1wf1 6377  ontowfo 6378  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729   + caddc 10732   < clt 10867  cle 10868  cmin 11062  cn 11830  0cn0 12090  cz 12176  ...cfz 13095  ..^cfzo 13238   mod cmo 13442  chash 13896  Word cword 14069   cyclShift ccsh 14353  Vtxcvtx 27087  iEdgciedg 27088  Walkscwlks 27684  Trailsctrls 27778  Circuitsccrcts 27871  EulerPathsceupth 28280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-hash 13897  df-word 14070  df-concat 14126  df-substr 14206  df-pfx 14236  df-csh 14354  df-wlks 27687  df-trls 27780  df-crcts 27873  df-eupth 28281
This theorem is referenced by:  eucrct2eupth  28328
  Copyright terms: Public domain W3C validator