MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruALT Structured version   Visualization version   GIF version

Theorem ruALT 9617
Description: Alternate proof of ru 3763, simplified using (indirectly) the Axiom of Regularity ax-reg 9606. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 5285 . . 3 ¬ V ∈ V
21nelir 3039 . 2 V ∉ V
3 ruv 9616 . . 3 {𝑥𝑥𝑥} = V
4 neleq1 3042 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
53, 4ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
62, 5mpbir 231 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  {cab 2713  wnel 3036  Vcvv 3459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-pr 5402  ax-reg 9606
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nel 3037  df-ral 3052  df-rex 3061  df-v 3461  df-un 3931  df-sn 4602  df-pr 4604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator