![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruALT | Structured version Visualization version GIF version |
Description: Alternate proof of ru 3789, simplified using (indirectly) the Axiom of Regularity ax-reg 9630. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5321 | . . 3 ⊢ ¬ V ∈ V | |
2 | 1 | nelir 3047 | . 2 ⊢ V ∉ V |
3 | ruv 9640 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
4 | neleq1 3050 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
6 | 2, 5 | mpbir 231 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 {cab 2712 ∉ wnel 3044 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-pr 5438 ax-reg 9630 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nel 3045 df-ral 3060 df-rex 3069 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |