| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of ru 3751, simplified using (indirectly) the Axiom of Regularity ax-reg 9545. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 5270 | . . 3 ⊢ ¬ V ∈ V | |
| 2 | 1 | nelir 3032 | . 2 ⊢ V ∉ V |
| 3 | ruv 9555 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
| 4 | neleq1 3035 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
| 6 | 2, 5 | mpbir 231 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {cab 2707 ∉ wnel 3029 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-pr 5387 ax-reg 9545 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nel 3030 df-ral 3045 df-rex 3054 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |