MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruALT Structured version   Visualization version   GIF version

Theorem ruALT 9672
Description: Alternate proof of ru 3802, simplified using (indirectly) the Axiom of Regularity ax-reg 9661. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 5333 . . 3 ¬ V ∈ V
21nelir 3055 . 2 V ∉ V
3 ruv 9671 . . 3 {𝑥𝑥𝑥} = V
4 neleq1 3058 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
53, 4ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
62, 5mpbir 231 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  {cab 2717  wnel 3052  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nel 3053  df-ral 3068  df-rex 3077  df-v 3490  df-un 3981  df-sn 4649  df-pr 4651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator