MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruALT Structured version   Visualization version   GIF version

Theorem ruALT 8784
Description: Alternate proof of ru 3661, simplified using (indirectly) the Axiom of Regularity ax-reg 8773. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 5024 . . 3 ¬ V ∈ V
21nelir 3105 . 2 V ∉ V
3 ruv 8783 . . 3 {𝑥𝑥𝑥} = V
4 neleq1 3107 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
53, 4ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
62, 5mpbir 223 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1656  {cab 2811  wnel 3102  Vcvv 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-reg 8773
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-nel 3103  df-ral 3122  df-rex 3123  df-v 3416  df-dif 3801  df-un 3803  df-nul 4147  df-sn 4400  df-pr 4402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator