MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruALT Structured version   Visualization version   GIF version

Theorem ruALT 9597
Description: Alternate proof of ru 3776, simplified using (indirectly) the Axiom of Regularity ax-reg 9586. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ruALT {𝑥𝑥𝑥} ∉ V

Proof of Theorem ruALT
StepHypRef Expression
1 vprc 5315 . . 3 ¬ V ∈ V
21nelir 3049 . 2 V ∉ V
3 ruv 9596 . . 3 {𝑥𝑥𝑥} = V
4 neleq1 3052 . . 3 ({𝑥𝑥𝑥} = V → ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V))
53, 4ax-mp 5 . 2 ({𝑥𝑥𝑥} ∉ V ↔ V ∉ V)
62, 5mpbir 230 1 {𝑥𝑥𝑥} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  {cab 2709  wnel 3046  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-pr 5427  ax-reg 9586
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nel 3047  df-ral 3062  df-rex 3071  df-v 3476  df-un 3953  df-sn 4629  df-pr 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator