![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruALT | Structured version Visualization version GIF version |
Description: Alternate proof of ru 3661, simplified using (indirectly) the Axiom of Regularity ax-reg 8773. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5024 | . . 3 ⊢ ¬ V ∈ V | |
2 | 1 | nelir 3105 | . 2 ⊢ V ∉ V |
3 | ruv 8783 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
4 | neleq1 3107 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
6 | 2, 5 | mpbir 223 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1656 {cab 2811 ∉ wnel 3102 Vcvv 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 ax-reg 8773 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-nel 3103 df-ral 3122 df-rex 3123 df-v 3416 df-dif 3801 df-un 3803 df-nul 4147 df-sn 4400 df-pr 4402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |