![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruALT | Structured version Visualization version GIF version |
Description: Alternate proof of ru 3630, simplified using (indirectly) the Axiom of Regularity ax-reg 8737. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ruALT | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4990 | . . 3 ⊢ ¬ V ∈ V | |
2 | 1 | nelir 3075 | . 2 ⊢ V ∉ V |
3 | ruv 8747 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | |
4 | neleq1 3077 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} = V → ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V ↔ V ∉ V) |
6 | 2, 5 | mpbir 223 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 {cab 2783 ∉ wnel 3072 Vcvv 3383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-reg 8737 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-nel 3073 df-ral 3092 df-rex 3093 df-v 3385 df-dif 3770 df-un 3772 df-nul 4114 df-sn 4367 df-pr 4369 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |