MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruv Structured version   Visualization version   GIF version

Theorem ruv 9596
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
Assertion
Ref Expression
ruv {𝑥𝑥𝑥} = V

Proof of Theorem ruv
StepHypRef Expression
1 vex 3478 . . . 4 𝑥 ∈ V
2 elirr 9591 . . . . 5 ¬ 𝑥𝑥
32nelir 3049 . . . 4 𝑥𝑥
41, 32th 263 . . 3 (𝑥 ∈ V ↔ 𝑥𝑥)
54eqabi 2869 . 2 V = {𝑥𝑥𝑥}
65eqcomi 2741 1 {𝑥𝑥𝑥} = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {cab 2709  wnel 3046  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-pr 5427  ax-reg 9586
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nel 3047  df-ral 3062  df-rex 3071  df-v 3476  df-un 3953  df-sn 4629  df-pr 4631
This theorem is referenced by:  ruALT  9597
  Copyright terms: Public domain W3C validator