![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruv | Structured version Visualization version GIF version |
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
Ref | Expression |
---|---|
ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | elirr 9635 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
3 | 2 | nelir 3047 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
4 | 1, 3 | 2th 264 | . . 3 ⊢ (𝑥 ∈ V ↔ 𝑥 ∉ 𝑥) |
5 | 4 | eqabi 2875 | . 2 ⊢ V = {𝑥 ∣ 𝑥 ∉ 𝑥} |
6 | 5 | eqcomi 2744 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {cab 2712 ∉ wnel 3044 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-pr 5438 ax-reg 9630 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nel 3045 df-ral 3060 df-rex 3069 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: ruALT 9641 |
Copyright terms: Public domain | W3C validator |