MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruv Structured version   Visualization version   GIF version

Theorem ruv 9491
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
Assertion
Ref Expression
ruv {𝑥𝑥𝑥} = V

Proof of Theorem ruv
StepHypRef Expression
1 vex 3440 . . . 4 𝑥 ∈ V
2 elirr 9485 . . . . 5 ¬ 𝑥𝑥
32nelir 3035 . . . 4 𝑥𝑥
41, 32th 264 . . 3 (𝑥 ∈ V ↔ 𝑥𝑥)
54eqabi 2866 . 2 V = {𝑥𝑥𝑥}
65eqcomi 2740 1 {𝑥𝑥𝑥} = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  {cab 2709  wnel 3032  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-v 3438
This theorem is referenced by:  ruALT  9492
  Copyright terms: Public domain W3C validator