MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruv Structured version   Visualization version   GIF version

Theorem ruv 8798
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
Assertion
Ref Expression
ruv {𝑥𝑥𝑥} = V

Proof of Theorem ruv
StepHypRef Expression
1 df-v 3400 . 2 V = {𝑥𝑥 = 𝑥}
2 equid 2059 . . . 4 𝑥 = 𝑥
3 elirrv 8792 . . . . 5 ¬ 𝑥𝑥
43nelir 3078 . . . 4 𝑥𝑥
52, 42th 256 . . 3 (𝑥 = 𝑥𝑥𝑥)
65abbii 2908 . 2 {𝑥𝑥 = 𝑥} = {𝑥𝑥𝑥}
71, 6eqtr2i 2803 1 {𝑥𝑥𝑥} = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  {cab 2763  wnel 3075  Vcvv 3398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-reg 8788
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-nel 3076  df-ral 3095  df-rex 3096  df-v 3400  df-dif 3795  df-un 3797  df-nul 4142  df-sn 4399  df-pr 4401
This theorem is referenced by:  ruALT  8799
  Copyright terms: Public domain W3C validator