![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruv | Structured version Visualization version GIF version |
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
Ref | Expression |
---|---|
ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3451 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | elirr 9541 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
3 | 2 | nelir 3049 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
4 | 1, 3 | 2th 264 | . . 3 ⊢ (𝑥 ∈ V ↔ 𝑥 ∉ 𝑥) |
5 | 4 | abbi2i 2870 | . 2 ⊢ V = {𝑥 ∣ 𝑥 ∉ 𝑥} |
6 | 5 | eqcomi 2742 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 {cab 2710 ∉ wnel 3046 Vcvv 3447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-pr 5388 ax-reg 9536 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nel 3047 df-ral 3062 df-rex 3071 df-v 3449 df-un 3919 df-sn 4591 df-pr 4593 |
This theorem is referenced by: ruALT 9547 |
Copyright terms: Public domain | W3C validator |