![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ruv | Structured version Visualization version GIF version |
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
Ref | Expression |
---|---|
ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-v 3400 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
2 | equid 2059 | . . . 4 ⊢ 𝑥 = 𝑥 | |
3 | elirrv 8792 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
4 | 3 | nelir 3078 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
5 | 2, 4 | 2th 256 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝑥 ∉ 𝑥) |
6 | 5 | abbii 2908 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝑥 ∉ 𝑥} |
7 | 1, 6 | eqtr2i 2803 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 {cab 2763 ∉ wnel 3075 Vcvv 3398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-reg 8788 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-nel 3076 df-ral 3095 df-rex 3096 df-v 3400 df-dif 3795 df-un 3797 df-nul 4142 df-sn 4399 df-pr 4401 |
This theorem is referenced by: ruALT 8799 |
Copyright terms: Public domain | W3C validator |