MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ruv Structured version   Visualization version   GIF version

Theorem ruv 9291
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
Assertion
Ref Expression
ruv {𝑥𝑥𝑥} = V

Proof of Theorem ruv
StepHypRef Expression
1 vex 3426 . . . 4 𝑥 ∈ V
2 elirr 9286 . . . . 5 ¬ 𝑥𝑥
32nelir 3051 . . . 4 𝑥𝑥
41, 32th 263 . . 3 (𝑥 ∈ V ↔ 𝑥𝑥)
54abbi2i 2878 . 2 V = {𝑥𝑥𝑥}
65eqcomi 2747 1 {𝑥𝑥𝑥} = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  {cab 2715  wnel 3048  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nel 3049  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  ruALT  9292
  Copyright terms: Public domain W3C validator