| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ruv | Structured version Visualization version GIF version | ||
| Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
| Ref | Expression |
|---|---|
| ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | elirr 9485 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 3 | 2 | nelir 3035 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
| 4 | 1, 3 | 2th 264 | . . 3 ⊢ (𝑥 ∈ V ↔ 𝑥 ∉ 𝑥) |
| 5 | 4 | eqabi 2866 | . 2 ⊢ V = {𝑥 ∣ 𝑥 ∉ 𝑥} |
| 6 | 5 | eqcomi 2740 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 {cab 2709 ∉ wnel 3032 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nel 3033 df-v 3438 |
| This theorem is referenced by: ruALT 9492 |
| Copyright terms: Public domain | W3C validator |