MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkslem Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkslem 27478
Description: Lemma for rusgrnumwwlks 27483. (Contributed by Alexander van der Vekens, 23-Aug-2018.)
Assertion
Ref Expression
rusgrnumwwlkslem (𝑌 ∈ {𝑤𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤𝑋 ∣ (𝜑𝜓)} = {𝑤𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓)})
Distinct variable groups:   𝑤,𝑃   𝑤,𝑌   𝑤,𝑍
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑤)   𝑋(𝑤)

Proof of Theorem rusgrnumwwlkslem
StepHypRef Expression
1 fveq1 6500 . . . 4 (𝑤 = 𝑌 → (𝑤‘0) = (𝑌‘0))
21eqeq1d 2780 . . 3 (𝑤 = 𝑌 → ((𝑤‘0) = 𝑃 ↔ (𝑌‘0) = 𝑃))
32elrab 3595 . 2 (𝑌 ∈ {𝑤𝑍 ∣ (𝑤‘0) = 𝑃} ↔ (𝑌𝑍 ∧ (𝑌‘0) = 𝑃))
4 ibar 521 . . . . 5 ((𝑌‘0) = 𝑃 → ((𝜑𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑𝜓))))
5 3anass 1076 . . . . . 6 (((𝑌‘0) = 𝑃𝜑𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑𝜓)))
6 3ancoma 1079 . . . . . 6 (((𝑌‘0) = 𝑃𝜑𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓))
75, 6bitr3i 269 . . . . 5 (((𝑌‘0) = 𝑃 ∧ (𝜑𝜓)) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓))
84, 7syl6bb 279 . . . 4 ((𝑌‘0) = 𝑃 → ((𝜑𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓)))
98ad2antlr 714 . . 3 (((𝑌𝑍 ∧ (𝑌‘0) = 𝑃) ∧ 𝑤𝑋) → ((𝜑𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓)))
109rabbidva 3402 . 2 ((𝑌𝑍 ∧ (𝑌‘0) = 𝑃) → {𝑤𝑋 ∣ (𝜑𝜓)} = {𝑤𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓)})
113, 10sylbi 209 1 (𝑌 ∈ {𝑤𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤𝑋 ∣ (𝜑𝜓)} = {𝑤𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  {crab 3092  cfv 6190  0cc0 10337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2750
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-uni 4714  df-br 4931  df-iota 6154  df-fv 6198
This theorem is referenced by:  rusgrnumwwlks  27483  rusgrnumwwlksOLD  27484
  Copyright terms: Public domain W3C validator