| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrnumwwlkslem | Structured version Visualization version GIF version | ||
| Description: Lemma for rusgrnumwwlks 29961. (Contributed by Alexander van der Vekens, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| rusgrnumwwlkslem | ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6880 | . . . 4 ⊢ (𝑤 = 𝑌 → (𝑤‘0) = (𝑌‘0)) | |
| 2 | 1 | eqeq1d 2738 | . . 3 ⊢ (𝑤 = 𝑌 → ((𝑤‘0) = 𝑃 ↔ (𝑌‘0) = 𝑃)) |
| 3 | 2 | elrab 3676 | . 2 ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} ↔ (𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃)) |
| 4 | ibar 528 | . . . . 5 ⊢ ((𝑌‘0) = 𝑃 → ((𝜑 ∧ 𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓)))) | |
| 5 | 3anass 1094 | . . . . . 6 ⊢ (((𝑌‘0) = 𝑃 ∧ 𝜑 ∧ 𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓))) | |
| 6 | 3ancoma 1097 | . . . . . 6 ⊢ (((𝑌‘0) = 𝑃 ∧ 𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)) | |
| 7 | 5, 6 | bitr3i 277 | . . . . 5 ⊢ (((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)) |
| 8 | 4, 7 | bitrdi 287 | . . . 4 ⊢ ((𝑌‘0) = 𝑃 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓))) |
| 9 | 8 | ad2antlr 727 | . . 3 ⊢ (((𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃) ∧ 𝑤 ∈ 𝑋) → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓))) |
| 10 | 9 | rabbidva 3427 | . 2 ⊢ ((𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃) → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
| 11 | 3, 10 | sylbi 217 | 1 ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3420 ‘cfv 6536 0cc0 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-ss 3948 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: rusgrnumwwlks 29961 |
| Copyright terms: Public domain | W3C validator |