![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlkslem | Structured version Visualization version GIF version |
Description: Lemma for rusgrnumwwlks 27483. (Contributed by Alexander van der Vekens, 23-Aug-2018.) |
Ref | Expression |
---|---|
rusgrnumwwlkslem | ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6500 | . . . 4 ⊢ (𝑤 = 𝑌 → (𝑤‘0) = (𝑌‘0)) | |
2 | 1 | eqeq1d 2780 | . . 3 ⊢ (𝑤 = 𝑌 → ((𝑤‘0) = 𝑃 ↔ (𝑌‘0) = 𝑃)) |
3 | 2 | elrab 3595 | . 2 ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} ↔ (𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃)) |
4 | ibar 521 | . . . . 5 ⊢ ((𝑌‘0) = 𝑃 → ((𝜑 ∧ 𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓)))) | |
5 | 3anass 1076 | . . . . . 6 ⊢ (((𝑌‘0) = 𝑃 ∧ 𝜑 ∧ 𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓))) | |
6 | 3ancoma 1079 | . . . . . 6 ⊢ (((𝑌‘0) = 𝑃 ∧ 𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)) | |
7 | 5, 6 | bitr3i 269 | . . . . 5 ⊢ (((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)) |
8 | 4, 7 | syl6bb 279 | . . . 4 ⊢ ((𝑌‘0) = 𝑃 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓))) |
9 | 8 | ad2antlr 714 | . . 3 ⊢ (((𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃) ∧ 𝑤 ∈ 𝑋) → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓))) |
10 | 9 | rabbidva 3402 | . 2 ⊢ ((𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃) → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
11 | 3, 10 | sylbi 209 | 1 ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 {crab 3092 ‘cfv 6190 0cc0 10337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-uni 4714 df-br 4931 df-iota 6154 df-fv 6198 |
This theorem is referenced by: rusgrnumwwlks 27483 rusgrnumwwlksOLD 27484 |
Copyright terms: Public domain | W3C validator |