Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlkslem | Structured version Visualization version GIF version |
Description: Lemma for rusgrnumwwlks 28339. (Contributed by Alexander van der Vekens, 23-Aug-2018.) |
Ref | Expression |
---|---|
rusgrnumwwlkslem | ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6773 | . . . 4 ⊢ (𝑤 = 𝑌 → (𝑤‘0) = (𝑌‘0)) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ (𝑤 = 𝑌 → ((𝑤‘0) = 𝑃 ↔ (𝑌‘0) = 𝑃)) |
3 | 2 | elrab 3624 | . 2 ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} ↔ (𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃)) |
4 | ibar 529 | . . . . 5 ⊢ ((𝑌‘0) = 𝑃 → ((𝜑 ∧ 𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓)))) | |
5 | 3anass 1094 | . . . . . 6 ⊢ (((𝑌‘0) = 𝑃 ∧ 𝜑 ∧ 𝜓) ↔ ((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓))) | |
6 | 3ancoma 1097 | . . . . . 6 ⊢ (((𝑌‘0) = 𝑃 ∧ 𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)) | |
7 | 5, 6 | bitr3i 276 | . . . . 5 ⊢ (((𝑌‘0) = 𝑃 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)) |
8 | 4, 7 | bitrdi 287 | . . . 4 ⊢ ((𝑌‘0) = 𝑃 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓))) |
9 | 8 | ad2antlr 724 | . . 3 ⊢ (((𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃) ∧ 𝑤 ∈ 𝑋) → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓))) |
10 | 9 | rabbidva 3413 | . 2 ⊢ ((𝑌 ∈ 𝑍 ∧ (𝑌‘0) = 𝑃) → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
11 | 3, 10 | sylbi 216 | 1 ⊢ (𝑌 ∈ {𝑤 ∈ 𝑍 ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ 𝜓)} = {𝑤 ∈ 𝑋 ∣ (𝜑 ∧ (𝑌‘0) = 𝑃 ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ‘cfv 6433 0cc0 10871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: rusgrnumwwlks 28339 |
Copyright terms: Public domain | W3C validator |