MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlklem Structured version   Visualization version   GIF version

Theorem rusgrnumwwlklem 29837
Description: Lemma for rusgrnumwwlk 29842 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlklem ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑃,𝑛,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀
Allowed substitution hints:   𝐿(𝑀,𝑣,𝑛)

Proof of Theorem rusgrnumwwlklem
StepHypRef Expression
1 oveq1 7424 . . . . 5 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 480 . . . 4 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2737 . . . . 5 (𝑣 = 𝑃 → ((𝑀‘0) = 𝑣 ↔ (𝑀‘0) = 𝑃))
43adantr 479 . . . 4 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → ((𝑀‘0) = 𝑣 ↔ (𝑀‘0) = 𝑃))
52, 4rabeqbidv 3437 . . 3 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃})
65fveq2d 6898 . 2 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
7 rusgrnumwwlk.l . 2 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
8 fvex 6907 . 2 (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}) ∈ V
96, 7, 8ovmpoa 7574 1 ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {crab 3419  â€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419  0cc0 11138  â„•0cn0 12502  â™¯chash 14321  Vtxcvtx 28865   WWalksN cwwlksn 29693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422
This theorem is referenced by:  rusgrnumwwlkb0  29838  rusgrnumwwlkb1  29839  rusgr0edg  29840  rusgrnumwwlks  29841  rusgrnumwwlkg  29843
  Copyright terms: Public domain W3C validator