| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrnumwwlklem | Structured version Visualization version GIF version | ||
| Description: Lemma for rusgrnumwwlk 29920 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.) |
| Ref | Expression |
|---|---|
| rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
| Ref | Expression |
|---|---|
| rusgrnumwwlklem | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7356 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)) |
| 3 | eqeq2 2741 | . . . . 5 ⊢ (𝑣 = 𝑃 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃)) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃)) |
| 5 | 2, 4 | rabeqbidv 3413 | . . 3 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
| 7 | rusgrnumwwlk.l | . 2 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
| 8 | fvex 6835 | . 2 ⊢ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) ∈ V | |
| 9 | 6, 7, 8 | ovmpoa 7504 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 0cc0 11009 ℕ0cn0 12384 ♯chash 14237 Vtxcvtx 28941 WWalksN cwwlksn 29771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: rusgrnumwwlkb0 29916 rusgrnumwwlkb1 29917 rusgr0edg 29918 rusgrnumwwlks 29919 rusgrnumwwlkg 29921 |
| Copyright terms: Public domain | W3C validator |