MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlklem Structured version   Visualization version   GIF version

Theorem rusgrnumwwlklem 29224
Description: Lemma for rusgrnumwwlk 29229 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlklem ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑃,𝑛,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀
Allowed substitution hints:   𝐿(𝑀,𝑣,𝑛)

Proof of Theorem rusgrnumwwlklem
StepHypRef Expression
1 oveq1 7416 . . . . 5 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 483 . . . 4 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2745 . . . . 5 (𝑣 = 𝑃 → ((𝑀‘0) = 𝑣 ↔ (𝑀‘0) = 𝑃))
43adantr 482 . . . 4 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → ((𝑀‘0) = 𝑣 ↔ (𝑀‘0) = 𝑃))
52, 4rabeqbidv 3450 . . 3 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃})
65fveq2d 6896 . 2 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
7 rusgrnumwwlk.l . 2 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
8 fvex 6905 . 2 (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}) ∈ V
96, 7, 8ovmpoa 7563 1 ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3433  â€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  0cc0 11110  â„•0cn0 12472  â™¯chash 14290  Vtxcvtx 28256   WWalksN cwwlksn 29080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414
This theorem is referenced by:  rusgrnumwwlkb0  29225  rusgrnumwwlkb1  29226  rusgr0edg  29227  rusgrnumwwlks  29228  rusgrnumwwlkg  29230
  Copyright terms: Public domain W3C validator