![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlklem | Structured version Visualization version GIF version |
Description: Lemma for rusgrnumwwlk 30008 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
rusgrnumwwlk.l | ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
Ref | Expression |
---|---|
rusgrnumwwlklem | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7455 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺)) |
3 | eqeq2 2752 | . . . . 5 ⊢ (𝑣 = 𝑃 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃)) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃)) |
5 | 2, 4 | rabeqbidv 3462 | . . 3 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) |
6 | 5 | fveq2d 6924 | . 2 ⊢ ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
7 | rusgrnumwwlk.l | . 2 ⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
8 | fvex 6933 | . 2 ⊢ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) ∈ V | |
9 | 6, 7, 8 | ovmpoa 7605 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 0cc0 11184 ℕ0cn0 12553 ♯chash 14379 Vtxcvtx 29031 WWalksN cwwlksn 29859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: rusgrnumwwlkb0 30004 rusgrnumwwlkb1 30005 rusgr0edg 30006 rusgrnumwwlks 30007 rusgrnumwwlkg 30009 |
Copyright terms: Public domain | W3C validator |