![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlklem | Structured version Visualization version GIF version |
Description: Lemma for rusgrnumwwlk 29229 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⢠ð = (Vtxâðº) |
rusgrnumwwlk.l | ⢠ð¿ = (ð£ â ð, ð â â0 ⊠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£})) |
Ref | Expression |
---|---|
rusgrnumwwlklem | ⢠((ð â ð ⧠ð â â0) â (ðð¿ð) = (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . . . . 5 ⢠(ð = ð â (ð WWalksN ðº) = (ð WWalksN ðº)) | |
2 | 1 | adantl 483 | . . . 4 ⢠((ð£ = ð ⧠ð = ð) â (ð WWalksN ðº) = (ð WWalksN ðº)) |
3 | eqeq2 2745 | . . . . 5 ⢠(ð£ = ð â ((ð€â0) = ð£ â (ð€â0) = ð)) | |
4 | 3 | adantr 482 | . . . 4 ⢠((ð£ = ð ⧠ð = ð) â ((ð€â0) = ð£ â (ð€â0) = ð)) |
5 | 2, 4 | rabeqbidv 3450 | . . 3 ⢠((ð£ = ð ⧠ð = ð) â {ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£} = {ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð}) |
6 | 5 | fveq2d 6896 | . 2 ⢠((ð£ = ð ⧠ð = ð) â (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£}) = (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð})) |
7 | rusgrnumwwlk.l | . 2 ⢠ð¿ = (ð£ â ð, ð â â0 ⊠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£})) | |
8 | fvex 6905 | . 2 ⢠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð}) â V | |
9 | 6, 7, 8 | ovmpoa 7563 | 1 ⢠((ð â ð ⧠ð â â0) â (ðð¿ð) = (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð})) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 ⧠wa 397 = wceq 1542 â wcel 2107 {crab 3433 âcfv 6544 (class class class)co 7409 â cmpo 7411 0cc0 11110 â0cn0 12472 â¯chash 14290 Vtxcvtx 28256 WWalksN cwwlksn 29080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: rusgrnumwwlkb0 29225 rusgrnumwwlkb1 29226 rusgr0edg 29227 rusgrnumwwlks 29228 rusgrnumwwlkg 29230 |
Copyright terms: Public domain | W3C validator |