![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlklem | Structured version Visualization version GIF version |
Description: Lemma for rusgrnumwwlk 29842 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⢠ð = (Vtxâðº) |
rusgrnumwwlk.l | ⢠ð¿ = (ð£ â ð, ð â â0 ⊠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£})) |
Ref | Expression |
---|---|
rusgrnumwwlklem | ⢠((ð â ð â§ ð â â0) â (ðð¿ð) = (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7424 | . . . . 5 ⢠(ð = ð â (ð WWalksN ðº) = (ð WWalksN ðº)) | |
2 | 1 | adantl 480 | . . . 4 ⢠((ð£ = ð â§ ð = ð) â (ð WWalksN ðº) = (ð WWalksN ðº)) |
3 | eqeq2 2737 | . . . . 5 ⢠(ð£ = ð â ((ð€â0) = ð£ â (ð€â0) = ð)) | |
4 | 3 | adantr 479 | . . . 4 ⢠((ð£ = ð â§ ð = ð) â ((ð€â0) = ð£ â (ð€â0) = ð)) |
5 | 2, 4 | rabeqbidv 3437 | . . 3 ⢠((ð£ = ð â§ ð = ð) â {ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£} = {ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð}) |
6 | 5 | fveq2d 6898 | . 2 ⢠((ð£ = ð â§ ð = ð) â (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£}) = (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð})) |
7 | rusgrnumwwlk.l | . 2 ⢠ð¿ = (ð£ â ð, ð â â0 ⊠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£})) | |
8 | fvex 6907 | . 2 ⢠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð}) â V | |
9 | 6, 7, 8 | ovmpoa 7574 | 1 ⢠((ð â ð â§ ð â â0) â (ðð¿ð) = (â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð})) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 â§ wa 394 = wceq 1533 â wcel 2098 {crab 3419 âcfv 6547 (class class class)co 7417 â cmpo 7419 0cc0 11138 â0cn0 12502 â¯chash 14321 Vtxcvtx 28865 WWalksN cwwlksn 29693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 |
This theorem is referenced by: rusgrnumwwlkb0 29838 rusgrnumwwlkb1 29839 rusgr0edg 29840 rusgrnumwwlks 29841 rusgrnumwwlkg 29843 |
Copyright terms: Public domain | W3C validator |