MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlklem Structured version   Visualization version   GIF version

Theorem rusgrnumwwlklem 29906
Description: Lemma for rusgrnumwwlk 29911 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlklem ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlklem
StepHypRef Expression
1 oveq1 7396 . . . . 5 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 481 . . . 4 ((𝑣 = 𝑃𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2742 . . . . 5 (𝑣 = 𝑃 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃))
43adantr 480 . . . 4 ((𝑣 = 𝑃𝑛 = 𝑁) → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑃))
52, 4rabeqbidv 3427 . . 3 ((𝑣 = 𝑃𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})
65fveq2d 6864 . 2 ((𝑣 = 𝑃𝑛 = 𝑁) → (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
7 rusgrnumwwlk.l . 2 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
8 fvex 6873 . 2 (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) ∈ V
96, 7, 8ovmpoa 7546 1 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  cfv 6513  (class class class)co 7389  cmpo 7391  0cc0 11074  0cn0 12448  chash 14301  Vtxcvtx 28929   WWalksN cwwlksn 29762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394
This theorem is referenced by:  rusgrnumwwlkb0  29907  rusgrnumwwlkb1  29908  rusgr0edg  29909  rusgrnumwwlks  29910  rusgrnumwwlkg  29912
  Copyright terms: Public domain W3C validator