MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlklem Structured version   Visualization version   GIF version

Theorem rusgrnumwwlklem 29768
Description: Lemma for rusgrnumwwlk 29773 etc. (Contributed by Alexander van der Vekens, 21-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlklem ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑃,𝑛,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀
Allowed substitution hints:   𝐿(𝑀,𝑣,𝑛)

Proof of Theorem rusgrnumwwlklem
StepHypRef Expression
1 oveq1 7421 . . . . 5 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 481 . . . 4 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2739 . . . . 5 (𝑣 = 𝑃 → ((𝑀‘0) = 𝑣 ↔ (𝑀‘0) = 𝑃))
43adantr 480 . . . 4 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → ((𝑀‘0) = 𝑣 ↔ (𝑀‘0) = 𝑃))
52, 4rabeqbidv 3444 . . 3 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → {𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃})
65fveq2d 6895 . 2 ((𝑣 = 𝑃 ∧ 𝑛 = 𝑁) → (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
7 rusgrnumwwlk.l . 2 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
8 fvex 6904 . 2 (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}) ∈ V
96, 7, 8ovmpoa 7570 1 ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {crab 3427  â€˜cfv 6542  (class class class)co 7414   ∈ cmpo 7416  0cc0 11130  â„•0cn0 12494  â™¯chash 14313  Vtxcvtx 28796   WWalksN cwwlksn 29624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419
This theorem is referenced by:  rusgrnumwwlkb0  29769  rusgrnumwwlkb1  29770  rusgr0edg  29771  rusgrnumwwlks  29772  rusgrnumwwlkg  29774
  Copyright terms: Public domain W3C validator