MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlks Structured version   Visualization version   GIF version

Theorem rusgrnumwwlks 29961
Description: Induction step for rusgrnumwwlk 29962. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 27-May-2022.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlks ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐾(𝑣,𝑛)   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlks
Dummy variables 𝑖 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2 1196 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑃𝑉)
2 simpr3 1197 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
3 rusgrnumwwlk.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 rusgrnumwwlk.l . . . . 5 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
53, 4rusgrnumwwlklem 29957 . . . 4 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
65eqeq1d 2738 . . 3 ((𝑃𝑉𝑁 ∈ ℕ0) → ((𝑃𝐿𝑁) = (𝐾𝑁) ↔ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)))
71, 2, 6syl2anc 584 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾𝑁) ↔ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)))
8 eqid 2736 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
98wwlksnredwwlkn0 29883 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
109ex 412 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
11103ad2ant3 1135 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
1211adantl 481 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
1312imp 406 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
1413rabbidva 3427 . . . . . . 7 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
1514adantr 480 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
1615fveq2d 6885 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
17 simp2 1137 . . . . . . . . . . . . 13 (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) → (𝑦‘0) = 𝑃)
1817pm4.71ri 560 . . . . . . . . . . . 12 (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
1918a1i 11 . . . . . . . . . . 11 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
2019rexbidva 3163 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
21 fveq1 6880 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥‘0) = (𝑦‘0))
2221eqeq1d 2738 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
2322rexrab 3684 . . . . . . . . . 10 (∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
2420, 23bitr4di 289 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
2524rabbidva 3427 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
2625adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
2726fveq2d 6885 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
28 simplr1 1216 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → 𝑉 ∈ Fin)
293eleq1i 2826 . . . . . . . 8 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
3029biimpi 216 . . . . . . 7 (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin)
31 eqid 2736 . . . . . . . 8 ((𝑁 + 1) WWalksN 𝐺) = ((𝑁 + 1) WWalksN 𝐺)
32 eqid 2736 . . . . . . . 8 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃}
3331, 8, 32hashwwlksnext 29901 . . . . . . 7 ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
3428, 30, 333syl 18 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
35 fveq1 6880 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0))
3635eqeq1d 2738 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝑥‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃))
3736cbvrabv 3431 . . . . . . . 8 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
3837sumeq1i 15718 . . . . . . 7 Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
3938a1i 11 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
4027, 34, 393eqtrd 2775 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
41 rusgrnumwwlkslem 29956 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
4241eqcomd 2742 . . . . . . . . . 10 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
4342fveq2d 6885 . . . . . . . . 9 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
4443adantl 481 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
45 elrabi 3671 . . . . . . . . . 10 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → 𝑦 ∈ (𝑁 WWalksN 𝐺))
4645adantl 481 . . . . . . . . 9 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → 𝑦 ∈ (𝑁 WWalksN 𝐺))
473, 8wwlksnexthasheq 29890 . . . . . . . . 9 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}))
4846, 47syl 17 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}))
493rusgrpropadjvtx 29570 . . . . . . . . . 10 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))
50 fveq1 6880 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
5150eqeq1d 2738 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
5251elrab 3676 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃))
533, 8wwlknp 29830 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
55 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑦 ∈ Word 𝑉)
56 nn0p1gt0 12535 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
57563ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 0 < (𝑁 + 1))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 0 < (𝑁 + 1))
59 breq2 5128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑦) = (𝑁 + 1) → (0 < (♯‘𝑦) ↔ 0 < (𝑁 + 1)))
6059ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑦) ↔ 0 < (𝑁 + 1)))
6158, 60mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 0 < (♯‘𝑦))
62 hashle00 14423 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 → ((♯‘𝑦) ≤ 0 ↔ 𝑦 = ∅))
63 lencl 14556 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ Word 𝑉 → (♯‘𝑦) ∈ ℕ0)
6463nn0red 12568 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ Word 𝑉 → (♯‘𝑦) ∈ ℝ)
65 0re 11242 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
66 lenlt 11318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((♯‘𝑦) ≤ 0 ↔ ¬ 0 < (♯‘𝑦)))
6766bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → (¬ 0 < (♯‘𝑦) ↔ (♯‘𝑦) ≤ 0))
6864, 65, 67sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 → (¬ 0 < (♯‘𝑦) ↔ (♯‘𝑦) ≤ 0))
69 nne 2937 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅))
7162, 68, 703bitr4rd 312 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ ¬ 0 < (♯‘𝑦)))
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (¬ 𝑦 ≠ ∅ ↔ ¬ 0 < (♯‘𝑦)))
7372con4bid 317 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑦 ≠ ∅ ↔ 0 < (♯‘𝑦)))
7461, 73mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑦 ≠ ∅)
7555, 74jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅))
7675ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
77763adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
7854, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
7952, 78sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
8079imp 406 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅))
81 lswcl 14591 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Word 𝑉𝑦 ≠ ∅) → (lastS‘𝑦) ∈ 𝑉)
8280, 81syl 17 . . . . . . . . . . . . . . 15 ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (lastS‘𝑦) ∈ 𝑉)
8382ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (lastS‘𝑦) ∈ 𝑉)
84 preq1 4714 . . . . . . . . . . . . . . . . . 18 (𝑝 = (lastS‘𝑦) → {𝑝, 𝑛} = {(lastS‘𝑦), 𝑛})
8584eleq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑝 = (lastS‘𝑦) → ({𝑝, 𝑛} ∈ (Edg‘𝐺) ↔ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)))
8685rabbidv 3428 . . . . . . . . . . . . . . . 16 (𝑝 = (lastS‘𝑦) → {𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)} = {𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)})
8786fveqeq2d 6889 . . . . . . . . . . . . . . 15 (𝑝 = (lastS‘𝑦) → ((♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))
8887rspcva 3604 . . . . . . . . . . . . . 14 (((lastS‘𝑦) ∈ 𝑉 ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)
8983, 88sylancom 588 . . . . . . . . . . . . 13 ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)
9089exp41 434 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
9190com14 96 . . . . . . . . . . 11 (∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
92913ad2ant3 1135 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
9349, 92syl 17 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
9493imp41 425 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)
9544, 48, 943eqtrd 2775 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = 𝐾)
9695sumeq2dv 15723 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾)
97 oveq1 7417 . . . . . . . 8 ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾𝑁) · 𝐾))
9897adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾𝑁) · 𝐾))
99 wwlksnfi 29893 . . . . . . . . . . . 12 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
10029, 99sylbi 217 . . . . . . . . . . 11 (𝑉 ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
1011003ad2ant1 1133 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) ∈ Fin)
102101ad2antlr 727 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (𝑁 WWalksN 𝐺) ∈ Fin)
103 rabfi 9280 . . . . . . . . 9 ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
104102, 103syl 17 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
105 rusgrusgr 29549 . . . . . . . . . . . . 13 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
106 simp1 1136 . . . . . . . . . . . . 13 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝑉 ∈ Fin)
107105, 106anim12i 613 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1083isfusgr 29302 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
109107, 108sylibr 234 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐺 ∈ FinUSGraph)
110 simpl 482 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾)
111 ne0i 4321 . . . . . . . . . . . . 13 (𝑃𝑉𝑉 ≠ ∅)
1121113ad2ant2 1134 . . . . . . . . . . . 12 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝑉 ≠ ∅)
113112adantl 481 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑉 ≠ ∅)
1143frusgrnn0 29556 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
115109, 110, 113, 114syl3anc 1373 . . . . . . . . . 10 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐾 ∈ ℕ0)
116115nn0cnd 12569 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐾 ∈ ℂ)
117116adantr 480 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → 𝐾 ∈ ℂ)
118 fsumconst 15811 . . . . . . . 8 (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin ∧ 𝐾 ∈ ℂ) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾))
119104, 117, 118syl2anc 584 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾))
120116, 2expp1d 14170 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝐾↑(𝑁 + 1)) = ((𝐾𝑁) · 𝐾))
121120adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (𝐾↑(𝑁 + 1)) = ((𝐾𝑁) · 𝐾))
12298, 119, 1213eqtr4d 2781 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = (𝐾↑(𝑁 + 1)))
12396, 122eqtrd 2771 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (𝐾↑(𝑁 + 1)))
12416, 40, 1233eqtrd 2775 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))
125 peano2nn0 12546 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1261253ad2ant3 1135 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
127126adantl 481 . . . . . 6 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ ℕ0)
1283, 4rusgrnumwwlklem 29957 . . . . . . 7 ((𝑃𝑉 ∧ (𝑁 + 1) ∈ ℕ0) → (𝑃𝐿(𝑁 + 1)) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
129128eqeq1d 2738 . . . . . 6 ((𝑃𝑉 ∧ (𝑁 + 1) ∈ ℕ0) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
1301, 127, 129syl2anc 584 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
131130adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
132124, 131mpbird 257 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)))
133132ex 412 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
1347, 133sylbid 240 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  c0 4313  {cpr 4608   class class class wbr 5124  cfv 6536  (class class class)co 7410  cmpo 7412  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  0cn0 12506  0*cxnn0 12579  ..^cfzo 13676  cexp 14084  chash 14353  Word cword 14536  lastSclsw 14585   prefix cpfx 14693  Σcsu 15707  Vtxcvtx 28980  Edgcedg 29031  USGraphcusgr 29133  FinUSGraphcfusgr 29300   RegUSGraph crusgr 29541   WWalksN cwwlksn 29813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-xadd 13134  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-vtx 28982  df-iedg 28983  df-edg 29032  df-uhgr 29042  df-ushgr 29043  df-upgr 29066  df-umgr 29067  df-uspgr 29134  df-usgr 29135  df-fusgr 29301  df-nbgr 29317  df-vtxdg 29451  df-rgr 29542  df-rusgr 29543  df-wwlks 29817  df-wwlksn 29818
This theorem is referenced by:  rusgrnumwwlk  29962
  Copyright terms: Public domain W3C validator