MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlks Structured version   Visualization version   GIF version

Theorem rusgrnumwwlks 29217
Description: Induction step for rusgrnumwwlk 29218. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 27-May-2022.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtxβ€˜πΊ)
rusgrnumwwlk.l 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„•0 ↦ (β™―β€˜{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlks ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ ((𝑃𝐿𝑁) = (𝐾↑𝑁) β†’ (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑃,𝑛,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀   𝑀,𝐾
Allowed substitution hints:   𝐾(𝑣,𝑛)   𝐿(𝑀,𝑣,𝑛)

Proof of Theorem rusgrnumwwlks
Dummy variables 𝑖 𝑝 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2 1195 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑃 ∈ 𝑉)
2 simpr3 1196 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑁 ∈ β„•0)
3 rusgrnumwwlk.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
4 rusgrnumwwlk.l . . . . 5 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ β„•0 ↦ (β™―β€˜{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑣}))
53, 4rusgrnumwwlklem 29213 . . . 4 ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑃𝐿𝑁) = (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}))
65eqeq1d 2734 . . 3 ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ ((𝑃𝐿𝑁) = (𝐾↑𝑁) ↔ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)))
71, 2, 6syl2anc 584 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ ((𝑃𝐿𝑁) = (𝐾↑𝑁) ↔ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)))
8 eqid 2732 . . . . . . . . . . . . 13 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
98wwlksnredwwlkn0 29139 . . . . . . . . . . . 12 ((𝑁 ∈ β„•0 ∧ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)) β†’ ((π‘€β€˜0) = 𝑃 ↔ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))))
109ex 413 . . . . . . . . . . 11 (𝑁 ∈ β„•0 β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ ((π‘€β€˜0) = 𝑃 ↔ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)))))
11103ad2ant3 1135 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ ((π‘€β€˜0) = 𝑃 ↔ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)))))
1211adantl 482 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) β†’ ((π‘€β€˜0) = 𝑃 ↔ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)))))
1312imp 407 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)) β†’ ((π‘€β€˜0) = 𝑃 ↔ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))))
1413rabbidva 3439 . . . . . . 7 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))})
1514adantr 481 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))})
1615fveq2d 6892 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
17 simp2 1137 . . . . . . . . . . . . 13 (((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)) β†’ (π‘¦β€˜0) = 𝑃)
1817pm4.71ri 561 . . . . . . . . . . . 12 (((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)) ↔ ((π‘¦β€˜0) = 𝑃 ∧ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))))
1918a1i 11 . . . . . . . . . . 11 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) β†’ (((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)) ↔ ((π‘¦β€˜0) = 𝑃 ∧ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)))))
2019rexbidva 3176 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)) β†’ (βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)) ↔ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((π‘¦β€˜0) = 𝑃 ∧ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)))))
21 fveq1 6887 . . . . . . . . . . . 12 (π‘₯ = 𝑦 β†’ (π‘₯β€˜0) = (π‘¦β€˜0))
2221eqeq1d 2734 . . . . . . . . . . 11 (π‘₯ = 𝑦 β†’ ((π‘₯β€˜0) = 𝑃 ↔ (π‘¦β€˜0) = 𝑃))
2322rexrab 3691 . . . . . . . . . 10 (βˆƒπ‘¦ ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)) ↔ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((π‘¦β€˜0) = 𝑃 ∧ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))))
2420, 23bitr4di 288 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ 𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺)) β†’ (βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ)) ↔ βˆƒπ‘¦ ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))))
2524rabbidva 3439 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))})
2625adantr 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))})
2726fveq2d 6892 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
28 simplr1 1215 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ 𝑉 ∈ Fin)
293eleq1i 2824 . . . . . . . 8 (𝑉 ∈ Fin ↔ (Vtxβ€˜πΊ) ∈ Fin)
3029biimpi 215 . . . . . . 7 (𝑉 ∈ Fin β†’ (Vtxβ€˜πΊ) ∈ Fin)
31 eqid 2732 . . . . . . . 8 ((𝑁 + 1) WWalksN 𝐺) = ((𝑁 + 1) WWalksN 𝐺)
32 eqid 2732 . . . . . . . 8 {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} = {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃}
3331, 8, 32hashwwlksnext 29157 . . . . . . 7 ((Vtxβ€˜πΊ) ∈ Fin β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = Σ𝑦 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
3428, 30, 333syl 18 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = Σ𝑦 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
35 fveq1 6887 . . . . . . . . . 10 (π‘₯ = 𝑀 β†’ (π‘₯β€˜0) = (π‘€β€˜0))
3635eqeq1d 2734 . . . . . . . . 9 (π‘₯ = 𝑀 β†’ ((π‘₯β€˜0) = 𝑃 ↔ (π‘€β€˜0) = 𝑃))
3736cbvrabv 3442 . . . . . . . 8 {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} = {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}
3837sumeq1i 15640 . . . . . . 7 Σ𝑦 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))})
3938a1i 11 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ Σ𝑦 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (π‘₯β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
4027, 34, 393eqtrd 2776 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ βˆƒπ‘¦ ∈ (𝑁 WWalksN 𝐺)((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
41 rusgrnumwwlkslem 29212 . . . . . . . . . . 11 (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))})
4241eqcomd 2738 . . . . . . . . . 10 (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))} = {𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))})
4342fveq2d 6892 . . . . . . . . 9 (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
4443adantl 482 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}))
45 elrabi 3676 . . . . . . . . . 10 (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ 𝑦 ∈ (𝑁 WWalksN 𝐺))
4645adantl 482 . . . . . . . . 9 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) β†’ 𝑦 ∈ (𝑁 WWalksN 𝐺))
473, 8wwlksnexthasheq 29146 . . . . . . . . 9 (𝑦 ∈ (𝑁 WWalksN 𝐺) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}))
4846, 47syl 17 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}))
493rusgrpropadjvtx 28831 . . . . . . . . . 10 (𝐺 RegUSGraph 𝐾 β†’ (𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘ ∈ 𝑉 (β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾))
50 fveq1 6887 . . . . . . . . . . . . . . . . . . . 20 (𝑀 = 𝑦 β†’ (π‘€β€˜0) = (π‘¦β€˜0))
5150eqeq1d 2734 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝑦 β†’ ((π‘€β€˜0) = 𝑃 ↔ (π‘¦β€˜0) = 𝑃))
5251elrab 3682 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘¦β€˜0) = 𝑃))
533, 8wwlknp 29086 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑁 WWalksN 𝐺) β†’ (𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘¦β€˜π‘–), (π‘¦β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
5453adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘¦β€˜0) = 𝑃) β†’ (𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘¦β€˜π‘–), (π‘¦β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
55 simpll 765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑦 ∈ Word 𝑉)
56 nn0p1gt0 12497 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ β„•0 β†’ 0 < (𝑁 + 1))
57563ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 0 < (𝑁 + 1))
5857adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 0 < (𝑁 + 1))
59 breq2 5151 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘¦) = (𝑁 + 1) β†’ (0 < (β™―β€˜π‘¦) ↔ 0 < (𝑁 + 1)))
6059ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (0 < (β™―β€˜π‘¦) ↔ 0 < (𝑁 + 1)))
6158, 60mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 0 < (β™―β€˜π‘¦))
62 hashle00 14356 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 β†’ ((β™―β€˜π‘¦) ≀ 0 ↔ 𝑦 = βˆ…))
63 lencl 14479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ Word 𝑉 β†’ (β™―β€˜π‘¦) ∈ β„•0)
6463nn0red 12529 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ Word 𝑉 β†’ (β™―β€˜π‘¦) ∈ ℝ)
65 0re 11212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
66 lenlt 11288 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((β™―β€˜π‘¦) ∈ ℝ ∧ 0 ∈ ℝ) β†’ ((β™―β€˜π‘¦) ≀ 0 ↔ Β¬ 0 < (β™―β€˜π‘¦)))
6766bicomd 222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((β™―β€˜π‘¦) ∈ ℝ ∧ 0 ∈ ℝ) β†’ (Β¬ 0 < (β™―β€˜π‘¦) ↔ (β™―β€˜π‘¦) ≀ 0))
6864, 65, 67sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 β†’ (Β¬ 0 < (β™―β€˜π‘¦) ↔ (β™―β€˜π‘¦) ≀ 0))
69 nne 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Β¬ 𝑦 β‰  βˆ… ↔ 𝑦 = βˆ…)
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 β†’ (Β¬ 𝑦 β‰  βˆ… ↔ 𝑦 = βˆ…))
7162, 68, 703bitr4rd 311 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ Word 𝑉 β†’ (Β¬ 𝑦 β‰  βˆ… ↔ Β¬ 0 < (β™―β€˜π‘¦)))
7271ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (Β¬ 𝑦 β‰  βˆ… ↔ Β¬ 0 < (β™―β€˜π‘¦)))
7372con4bid 316 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (𝑦 β‰  βˆ… ↔ 0 < (β™―β€˜π‘¦)))
7461, 73mpbird 256 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑦 β‰  βˆ…)
7555, 74jca 512 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (𝑦 ∈ Word 𝑉 ∧ 𝑦 β‰  βˆ…))
7675ex 413 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1)) β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑦 ∈ Word 𝑉 ∧ 𝑦 β‰  βˆ…)))
77763adant3 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ Word 𝑉 ∧ (β™―β€˜π‘¦) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘¦β€˜π‘–), (π‘¦β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑦 ∈ Word 𝑉 ∧ 𝑦 β‰  βˆ…)))
7854, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (π‘¦β€˜0) = 𝑃) β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑦 ∈ Word 𝑉 ∧ 𝑦 β‰  βˆ…)))
7952, 78sylbi 216 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑦 ∈ Word 𝑉 ∧ 𝑦 β‰  βˆ…)))
8079imp 407 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (𝑦 ∈ Word 𝑉 ∧ 𝑦 β‰  βˆ…))
81 lswcl 14514 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Word 𝑉 ∧ 𝑦 β‰  βˆ…) β†’ (lastSβ€˜π‘¦) ∈ 𝑉)
8280, 81syl 17 . . . . . . . . . . . . . . 15 ((𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (lastSβ€˜π‘¦) ∈ 𝑉)
8382ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) ∧ βˆ€π‘ ∈ 𝑉 (β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾) β†’ (lastSβ€˜π‘¦) ∈ 𝑉)
84 preq1 4736 . . . . . . . . . . . . . . . . . 18 (𝑝 = (lastSβ€˜π‘¦) β†’ {𝑝, 𝑛} = {(lastSβ€˜π‘¦), 𝑛})
8584eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑝 = (lastSβ€˜π‘¦) β†’ ({𝑝, 𝑛} ∈ (Edgβ€˜πΊ) ↔ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)))
8685rabbidv 3440 . . . . . . . . . . . . . . . 16 (𝑝 = (lastSβ€˜π‘¦) β†’ {𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)} = {𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)})
8786fveqeq2d 6896 . . . . . . . . . . . . . . 15 (𝑝 = (lastSβ€˜π‘¦) β†’ ((β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾 ↔ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾))
8887rspcva 3610 . . . . . . . . . . . . . 14 (((lastSβ€˜π‘¦) ∈ 𝑉 ∧ βˆ€π‘ ∈ 𝑉 (β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾) β†’ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾)
8983, 88sylancom 588 . . . . . . . . . . . . 13 ((((𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) ∧ βˆ€π‘ ∈ 𝑉 (β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾) β†’ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾)
9089exp41 435 . . . . . . . . . . . 12 (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁) β†’ (βˆ€π‘ ∈ 𝑉 (β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾 β†’ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾))))
9190com14 96 . . . . . . . . . . 11 (βˆ€π‘ ∈ 𝑉 (β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾 β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁) β†’ (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾))))
92913ad2ant3 1135 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ β„•0* ∧ βˆ€π‘ ∈ 𝑉 (β™―β€˜{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾) β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁) β†’ (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾))))
9349, 92syl 17 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 β†’ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁) β†’ (𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} β†’ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾))))
9493imp41 426 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) β†’ (β™―β€˜{𝑛 ∈ 𝑉 ∣ {(lastSβ€˜π‘¦), 𝑛} ∈ (Edgβ€˜πΊ)}) = 𝐾)
9544, 48, 943eqtrd 2776 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = 𝐾)
9695sumeq2dv 15645 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}𝐾)
97 oveq1 7412 . . . . . . . 8 ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) Β· 𝐾) = ((𝐾↑𝑁) Β· 𝐾))
9897adantl 482 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) Β· 𝐾) = ((𝐾↑𝑁) Β· 𝐾))
99 wwlksnfi 29149 . . . . . . . . . . . 12 ((Vtxβ€˜πΊ) ∈ Fin β†’ (𝑁 WWalksN 𝐺) ∈ Fin)
10029, 99sylbi 216 . . . . . . . . . . 11 (𝑉 ∈ Fin β†’ (𝑁 WWalksN 𝐺) ∈ Fin)
1011003ad2ant1 1133 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑁 WWalksN 𝐺) ∈ Fin)
102101ad2antlr 725 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (𝑁 WWalksN 𝐺) ∈ Fin)
103 rabfi 9265 . . . . . . . . 9 ((𝑁 WWalksN 𝐺) ∈ Fin β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ∈ Fin)
104102, 103syl 17 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ∈ Fin)
105 rusgrusgr 28810 . . . . . . . . . . . . 13 (𝐺 RegUSGraph 𝐾 β†’ 𝐺 ∈ USGraph)
106 simp1 1136 . . . . . . . . . . . . 13 ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝑉 ∈ Fin)
107105, 106anim12i 613 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1083isfusgr 28564 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
109107, 108sylibr 233 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐺 ∈ FinUSGraph)
110 simpl 483 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐺 RegUSGraph 𝐾)
111 ne0i 4333 . . . . . . . . . . . . 13 (𝑃 ∈ 𝑉 β†’ 𝑉 β‰  βˆ…)
1121113ad2ant2 1134 . . . . . . . . . . . 12 ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ 𝑉 β‰  βˆ…)
113112adantl 482 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝑉 β‰  βˆ…)
1143frusgrnn0 28817 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 β‰  βˆ…) β†’ 𝐾 ∈ β„•0)
115109, 110, 113, 114syl3anc 1371 . . . . . . . . . 10 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐾 ∈ β„•0)
116115nn0cnd 12530 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ 𝐾 ∈ β„‚)
117116adantr 481 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ 𝐾 ∈ β„‚)
118 fsumconst 15732 . . . . . . . 8 (({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} ∈ Fin ∧ 𝐾 ∈ β„‚) β†’ Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}𝐾 = ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) Β· 𝐾))
119104, 117, 118syl2anc 584 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}𝐾 = ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) Β· 𝐾))
120116, 2expp1d 14108 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (𝐾↑(𝑁 + 1)) = ((𝐾↑𝑁) Β· 𝐾))
121120adantr 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (𝐾↑(𝑁 + 1)) = ((𝐾↑𝑁) Β· 𝐾))
12298, 119, 1213eqtr4d 2782 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}𝐾 = (𝐾↑(𝑁 + 1)))
12396, 122eqtrd 2772 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ Σ𝑦 ∈ {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑀 prefix (𝑁 + 1)) = 𝑦 ∧ (π‘¦β€˜0) = 𝑃 ∧ {(lastSβ€˜π‘¦), (lastSβ€˜π‘€)} ∈ (Edgβ€˜πΊ))}) = (𝐾↑(𝑁 + 1)))
12416, 40, 1233eqtrd 2776 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑(𝑁 + 1)))
125 peano2nn0 12508 . . . . . . . 8 (𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ β„•0)
1261253ad2ant3 1135 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0) β†’ (𝑁 + 1) ∈ β„•0)
127126adantl 482 . . . . . 6 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ (𝑁 + 1) ∈ β„•0)
1283, 4rusgrnumwwlklem 29213 . . . . . . 7 ((𝑃 ∈ 𝑉 ∧ (𝑁 + 1) ∈ β„•0) β†’ (𝑃𝐿(𝑁 + 1)) = (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}))
129128eqeq1d 2734 . . . . . 6 ((𝑃 ∈ 𝑉 ∧ (𝑁 + 1) ∈ β„•0) β†’ ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
1301, 127, 129syl2anc 584 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
131130adantr 481 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (β™―β€˜{𝑀 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
132124, 131mpbird 256 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) ∧ (β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁)) β†’ (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)))
133132ex 413 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ ((β™―β€˜{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (𝐾↑𝑁) β†’ (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
1347, 133sylbid 239 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ β„•0)) β†’ ((𝑃𝐿𝑁) = (𝐾↑𝑁) β†’ (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432  βˆ…c0 4321  {cpr 4629   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Fincfn 8935  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   Β· cmul 11111   < clt 11244   ≀ cle 11245  β„•0cn0 12468  β„•0*cxnn0 12540  ..^cfzo 13623  β†‘cexp 14023  β™―chash 14286  Word cword 14460  lastSclsw 14508   prefix cpfx 14616  Ξ£csu 15628  Vtxcvtx 28245  Edgcedg 28296  USGraphcusgr 28398  FinUSGraphcfusgr 28562   RegUSGraph crusgr 28802   WWalksN cwwlksn 29069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-vtx 28247  df-iedg 28248  df-edg 28297  df-uhgr 28307  df-ushgr 28308  df-upgr 28331  df-umgr 28332  df-uspgr 28399  df-usgr 28400  df-fusgr 28563  df-nbgr 28579  df-vtxdg 28712  df-rgr 28803  df-rusgr 28804  df-wwlks 29073  df-wwlksn 29074
This theorem is referenced by:  rusgrnumwwlk  29218
  Copyright terms: Public domain W3C validator