Step | Hyp | Ref
| Expression |
1 | | simpr2 1193 |
. . 3
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑃 ∈ 𝑉) |
2 | | simpr3 1194 |
. . 3
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈
ℕ0) |
3 | | rusgrnumwwlk.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
4 | | rusgrnumwwlk.l |
. . . . 5
⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦
(♯‘{𝑤 ∈
(𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
5 | 3, 4 | rusgrnumwwlklem 28236 |
. . . 4
⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
6 | 5 | eqeq1d 2740 |
. . 3
⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑃𝐿𝑁) = (𝐾↑𝑁) ↔ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁))) |
7 | 1, 2, 6 | syl2anc 583 |
. 2
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾↑𝑁) ↔ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁))) |
8 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
9 | 8 | wwlksnredwwlkn0 28162 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))) |
10 | 9 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))) |
11 | 10 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))) |
12 | 11 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))) |
13 | 12 | imp 406 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))) |
14 | 13 | rabbidva 3402 |
. . . . . . 7
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) |
15 | 14 | adantr 480 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) |
16 | 15 | fveq2d 6760 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
17 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) → (𝑦‘0) = 𝑃) |
18 | 17 | pm4.71ri 560 |
. . . . . . . . . . . 12
⊢ (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))) |
19 | 18 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))) |
20 | 19 | rexbidva 3224 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))) |
21 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥‘0) = (𝑦‘0)) |
22 | 21 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃)) |
23 | 22 | rexrab 3626 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))) |
24 | 20, 23 | bitr4di 288 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))) |
25 | 24 | rabbidva 3402 |
. . . . . . . 8
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) |
26 | 25 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) |
27 | 26 | fveq2d 6760 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
28 | | simplr1 1213 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → 𝑉 ∈ Fin) |
29 | 3 | eleq1i 2829 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin ↔
(Vtx‘𝐺) ∈
Fin) |
30 | 29 | biimpi 215 |
. . . . . . 7
⊢ (𝑉 ∈ Fin →
(Vtx‘𝐺) ∈
Fin) |
31 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝑁 + 1) WWalksN 𝐺) = ((𝑁 + 1) WWalksN 𝐺) |
32 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} |
33 | 31, 8, 32 | hashwwlksnext 28180 |
. . . . . . 7
⊢
((Vtx‘𝐺)
∈ Fin → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
34 | 28, 30, 33 | 3syl 18 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
35 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0)) |
36 | 35 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑥‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃)) |
37 | 36 | cbvrabv 3416 |
. . . . . . . 8
⊢ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
38 | 37 | sumeq1i 15338 |
. . . . . . 7
⊢
Σ𝑦 ∈
{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) |
39 | 38 | a1i 11 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
40 | 27, 34, 39 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
41 | | rusgrnumwwlkslem 28235 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) |
42 | 41 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) |
43 | 42 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
44 | 43 | adantl 481 |
. . . . . . . 8
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})) |
45 | | elrabi 3611 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → 𝑦 ∈ (𝑁 WWalksN 𝐺)) |
46 | 45 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → 𝑦 ∈ (𝑁 WWalksN 𝐺)) |
47 | 3, 8 | wwlksnexthasheq 28169 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑁 WWalksN 𝐺) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)})) |
48 | 46, 47 | syl 17 |
. . . . . . . 8
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)})) |
49 | 3 | rusgrpropadjvtx 27855 |
. . . . . . . . . 10
⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*
∧ ∀𝑝 ∈
𝑉 (♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)) |
50 | | fveq1 6755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0)) |
51 | 50 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃)) |
52 | 51 | elrab 3617 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃)) |
53 | 3, 8 | wwlknp 28109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
55 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑦 ∈ Word 𝑉) |
56 | | nn0p1gt0 12192 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ0
→ 0 < (𝑁 +
1)) |
57 | 56 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 0 <
(𝑁 + 1)) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 0 <
(𝑁 + 1)) |
59 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((♯‘𝑦) =
(𝑁 + 1) → (0 <
(♯‘𝑦) ↔ 0
< (𝑁 +
1))) |
60 | 59 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (0 <
(♯‘𝑦) ↔ 0
< (𝑁 +
1))) |
61 | 58, 60 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 0 <
(♯‘𝑦)) |
62 | | hashle00 14043 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ Word 𝑉 → ((♯‘𝑦) ≤ 0 ↔ 𝑦 = ∅)) |
63 | | lencl 14164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ Word 𝑉 → (♯‘𝑦) ∈
ℕ0) |
64 | 63 | nn0red 12224 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ Word 𝑉 → (♯‘𝑦) ∈ ℝ) |
65 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
ℝ |
66 | | lenlt 10984 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((♯‘𝑦)
∈ ℝ ∧ 0 ∈ ℝ) → ((♯‘𝑦) ≤ 0 ↔ ¬ 0 <
(♯‘𝑦))) |
67 | 66 | bicomd 222 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((♯‘𝑦)
∈ ℝ ∧ 0 ∈ ℝ) → (¬ 0 <
(♯‘𝑦) ↔
(♯‘𝑦) ≤
0)) |
68 | 64, 65, 67 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ Word 𝑉 → (¬ 0 < (♯‘𝑦) ↔ (♯‘𝑦) ≤ 0)) |
69 | | nne 2946 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑦 ≠ ∅ ↔ 𝑦 = ∅) |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅)) |
71 | 62, 68, 70 | 3bitr4rd 311 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ ¬ 0 <
(♯‘𝑦))) |
72 | 71 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (¬
𝑦 ≠ ∅ ↔ ¬
0 < (♯‘𝑦))) |
73 | 72 | con4bid 316 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑦 ≠ ∅ ↔ 0 <
(♯‘𝑦))) |
74 | 61, 73 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑦 ≠ ∅) |
75 | 55, 74 | jca 511 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅)) |
76 | 75 | ex 412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
77 | 76 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
78 | 54, 77 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
79 | 52, 78 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
80 | 79 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅)) |
81 | | lswcl 14199 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅) → (lastS‘𝑦) ∈ 𝑉) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) →
(lastS‘𝑦) ∈
𝑉) |
83 | 82 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (lastS‘𝑦) ∈ 𝑉) |
84 | | preq1 4666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = (lastS‘𝑦) → {𝑝, 𝑛} = {(lastS‘𝑦), 𝑛}) |
85 | 84 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = (lastS‘𝑦) → ({𝑝, 𝑛} ∈ (Edg‘𝐺) ↔ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺))) |
86 | 85 | rabbidv 3404 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = (lastS‘𝑦) → {𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)} = {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) |
87 | 86 | fveqeq2d 6764 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = (lastS‘𝑦) → ((♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)) |
88 | 87 | rspcva 3550 |
. . . . . . . . . . . . . 14
⊢
(((lastS‘𝑦)
∈ 𝑉 ∧
∀𝑝 ∈ 𝑉 (♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) |
89 | 83, 88 | sylancom 587 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) |
90 | 89 | exp41 434 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (∀𝑝 ∈ 𝑉 (♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
91 | 90 | com14 96 |
. . . . . . . . . . 11
⊢
(∀𝑝 ∈
𝑉 (♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
92 | 91 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈
ℕ0* ∧ ∀𝑝 ∈ 𝑉 (♯‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
93 | 49, 92 | syl 17 |
. . . . . . . . 9
⊢ (𝐺 RegUSGraph 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
94 | 93 | imp41 425 |
. . . . . . . 8
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑛 ∈ 𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) |
95 | 44, 48, 94 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = 𝐾) |
96 | 95 | sumeq2dv 15343 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾) |
97 | | oveq1 7262 |
. . . . . . . 8
⊢
((♯‘{𝑤
∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾↑𝑁) · 𝐾)) |
98 | 97 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾↑𝑁) · 𝐾)) |
99 | | wwlksnfi 28172 |
. . . . . . . . . . . 12
⊢
((Vtx‘𝐺)
∈ Fin → (𝑁
WWalksN 𝐺) ∈
Fin) |
100 | 29, 99 | sylbi 216 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) |
101 | 100 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) ∈ Fin) |
102 | 101 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (𝑁 WWalksN 𝐺) ∈ Fin) |
103 | | rabfi 8973 |
. . . . . . . . 9
⊢ ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) |
104 | 102, 103 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) |
105 | | rusgrusgr 27834 |
. . . . . . . . . . . . 13
⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
106 | | simp1 1134 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑉 ∈ Fin) |
107 | 105, 106 | anim12i 612 |
. . . . . . . . . . . 12
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
108 | 3 | isfusgr 27588 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
109 | 107, 108 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐺 ∈
FinUSGraph) |
110 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾) |
111 | | ne0i 4265 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑉 → 𝑉 ≠ ∅) |
112 | 111 | 3ad2ant2 1132 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑉 ≠ ∅) |
113 | 112 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑉 ≠ ∅) |
114 | 3 | frusgrnn0 27841 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈
ℕ0) |
115 | 109, 110,
113, 114 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐾 ∈
ℕ0) |
116 | 115 | nn0cnd 12225 |
. . . . . . . . 9
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐾 ∈
ℂ) |
117 | 116 | adantr 480 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → 𝐾 ∈ ℂ) |
118 | | fsumconst 15430 |
. . . . . . . 8
⊢ (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin ∧ 𝐾 ∈ ℂ) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾)) |
119 | 104, 117,
118 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾)) |
120 | 116, 2 | expp1d 13793 |
. . . . . . . 8
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝐾↑(𝑁 + 1)) = ((𝐾↑𝑁) · 𝐾)) |
121 | 120 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (𝐾↑(𝑁 + 1)) = ((𝐾↑𝑁) · 𝐾)) |
122 | 98, 119, 121 | 3eqtr4d 2788 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = (𝐾↑(𝑁 + 1))) |
123 | 96, 122 | eqtrd 2778 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (𝐾↑(𝑁 + 1))) |
124 | 16, 40, 123 | 3eqtrd 2782 |
. . . 4
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))) |
125 | | peano2nn0 12203 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
126 | 125 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
ℕ0) |
127 | 126 | adantl 481 |
. . . . . 6
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈
ℕ0) |
128 | 3, 4 | rusgrnumwwlklem 28236 |
. . . . . . 7
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑁 + 1) ∈ ℕ0) →
(𝑃𝐿(𝑁 + 1)) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
129 | 128 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑁 + 1) ∈ ℕ0) →
((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))) |
130 | 1, 127, 129 | syl2anc 583 |
. . . . 5
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))) |
131 | 130 | adantr 480 |
. . . 4
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))) |
132 | 124, 131 | mpbird 256 |
. . 3
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))) |
133 | 132 | ex 412 |
. 2
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) →
((♯‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)))) |
134 | 7, 133 | sylbid 239 |
1
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾↑𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)))) |