MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlks Structured version   Visualization version   GIF version

Theorem rusgrnumwwlks 30004
Description: Induction step for rusgrnumwwlk 30005. (Contributed by Alexander van der Vekens, 24-Aug-2018.) (Revised by AV, 7-May-2021.) (Proof shortened by AV, 27-May-2022.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlks ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐾(𝑣,𝑛)   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlks
Dummy variables 𝑖 𝑝 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr2 1194 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑃𝑉)
2 simpr3 1195 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℕ0)
3 rusgrnumwwlk.v . . . . 5 𝑉 = (Vtx‘𝐺)
4 rusgrnumwwlk.l . . . . 5 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
53, 4rusgrnumwwlklem 30000 . . . 4 ((𝑃𝑉𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
65eqeq1d 2737 . . 3 ((𝑃𝑉𝑁 ∈ ℕ0) → ((𝑃𝐿𝑁) = (𝐾𝑁) ↔ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)))
71, 2, 6syl2anc 584 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾𝑁) ↔ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)))
8 eqid 2735 . . . . . . . . . . . . 13 (Edg‘𝐺) = (Edg‘𝐺)
98wwlksnredwwlkn0 29926 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
109ex 412 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
11103ad2ant3 1134 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
1211adantl 481 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
1312imp 406 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
1413rabbidva 3440 . . . . . . 7 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
1514adantr 480 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
1615fveq2d 6911 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
17 simp2 1136 . . . . . . . . . . . . 13 (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) → (𝑦‘0) = 𝑃)
1817pm4.71ri 560 . . . . . . . . . . . 12 (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
1918a1i 11 . . . . . . . . . . 11 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
2019rexbidva 3175 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)))))
21 fveq1 6906 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥‘0) = (𝑦‘0))
2221eqeq1d 2737 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
2322rexrab 3705 . . . . . . . . . 10 (∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
2420, 23bitr4di 289 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))))
2524rabbidva 3440 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
2625adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
2726fveq2d 6911 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
28 simplr1 1214 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → 𝑉 ∈ Fin)
293eleq1i 2830 . . . . . . . 8 (𝑉 ∈ Fin ↔ (Vtx‘𝐺) ∈ Fin)
3029biimpi 216 . . . . . . 7 (𝑉 ∈ Fin → (Vtx‘𝐺) ∈ Fin)
31 eqid 2735 . . . . . . . 8 ((𝑁 + 1) WWalksN 𝐺) = ((𝑁 + 1) WWalksN 𝐺)
32 eqid 2735 . . . . . . . 8 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃}
3331, 8, 32hashwwlksnext 29944 . . . . . . 7 ((Vtx‘𝐺) ∈ Fin → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
3428, 30, 333syl 18 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
35 fveq1 6906 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0))
3635eqeq1d 2737 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝑥‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃))
3736cbvrabv 3444 . . . . . . . 8 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}
3837sumeq1i 15730 . . . . . . 7 Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
3938a1i 11 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
4027, 34, 393eqtrd 2779 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
41 rusgrnumwwlkslem 29999 . . . . . . . . . . 11 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
4241eqcomd 2741 . . . . . . . . . 10 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))})
4342fveq2d 6911 . . . . . . . . 9 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
4443adantl 481 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}))
45 elrabi 3690 . . . . . . . . . 10 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → 𝑦 ∈ (𝑁 WWalksN 𝐺))
4645adantl 481 . . . . . . . . 9 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → 𝑦 ∈ (𝑁 WWalksN 𝐺))
473, 8wwlksnexthasheq 29933 . . . . . . . . 9 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}))
4846, 47syl 17 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}))
493rusgrpropadjvtx 29618 . . . . . . . . . 10 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))
50 fveq1 6906 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
5150eqeq1d 2737 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃))
5251elrab 3695 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃))
533, 8wwlknp 29873 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
55 simpll 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑦 ∈ Word 𝑉)
56 nn0p1gt0 12553 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
57563ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 0 < (𝑁 + 1))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 0 < (𝑁 + 1))
59 breq2 5152 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑦) = (𝑁 + 1) → (0 < (♯‘𝑦) ↔ 0 < (𝑁 + 1)))
6059ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (0 < (♯‘𝑦) ↔ 0 < (𝑁 + 1)))
6158, 60mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 0 < (♯‘𝑦))
62 hashle00 14436 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 → ((♯‘𝑦) ≤ 0 ↔ 𝑦 = ∅))
63 lencl 14568 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ Word 𝑉 → (♯‘𝑦) ∈ ℕ0)
6463nn0red 12586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ Word 𝑉 → (♯‘𝑦) ∈ ℝ)
65 0re 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℝ
66 lenlt 11337 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → ((♯‘𝑦) ≤ 0 ↔ ¬ 0 < (♯‘𝑦)))
6766bicomd 223 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((♯‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ) → (¬ 0 < (♯‘𝑦) ↔ (♯‘𝑦) ≤ 0))
6864, 65, 67sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 → (¬ 0 < (♯‘𝑦) ↔ (♯‘𝑦) ≤ 0))
69 nne 2942 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑦 ≠ ∅ ↔ 𝑦 = ∅)
7069a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅))
7162, 68, 703bitr4rd 312 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ ¬ 0 < (♯‘𝑦)))
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (¬ 𝑦 ≠ ∅ ↔ ¬ 0 < (♯‘𝑦)))
7372con4bid 317 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑦 ≠ ∅ ↔ 0 < (♯‘𝑦)))
7461, 73mpbird 257 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑦 ≠ ∅)
7555, 74jca 511 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅))
7675ex 412 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1)) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
77763adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
7854, 77syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
7952, 78sylbi 217 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅)))
8079imp 406 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉𝑦 ≠ ∅))
81 lswcl 14603 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Word 𝑉𝑦 ≠ ∅) → (lastS‘𝑦) ∈ 𝑉)
8280, 81syl 17 . . . . . . . . . . . . . . 15 ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (lastS‘𝑦) ∈ 𝑉)
8382ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (lastS‘𝑦) ∈ 𝑉)
84 preq1 4738 . . . . . . . . . . . . . . . . . 18 (𝑝 = (lastS‘𝑦) → {𝑝, 𝑛} = {(lastS‘𝑦), 𝑛})
8584eleq1d 2824 . . . . . . . . . . . . . . . . 17 (𝑝 = (lastS‘𝑦) → ({𝑝, 𝑛} ∈ (Edg‘𝐺) ↔ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)))
8685rabbidv 3441 . . . . . . . . . . . . . . . 16 (𝑝 = (lastS‘𝑦) → {𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)} = {𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)})
8786fveqeq2d 6915 . . . . . . . . . . . . . . 15 (𝑝 = (lastS‘𝑦) → ((♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))
8887rspcva 3620 . . . . . . . . . . . . . 14 (((lastS‘𝑦) ∈ 𝑉 ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)
8983, 88sylancom 588 . . . . . . . . . . . . 13 ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)
9089exp41 434 . . . . . . . . . . . 12 (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
9190com14 96 . . . . . . . . . . 11 (∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
92913ad2ant3 1134 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑝𝑉 (♯‘{𝑛𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
9349, 92syl 17 . . . . . . . . 9 (𝐺 RegUSGraph 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾))))
9493imp41 425 . . . . . . . 8 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑛𝑉 ∣ {(lastS‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)
9544, 48, 943eqtrd 2779 . . . . . . 7 ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = 𝐾)
9695sumeq2dv 15735 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾)
97 oveq1 7438 . . . . . . . 8 ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾𝑁) · 𝐾))
9897adantl 481 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾𝑁) · 𝐾))
99 wwlksnfi 29936 . . . . . . . . . . . 12 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
10029, 99sylbi 217 . . . . . . . . . . 11 (𝑉 ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
1011003ad2ant1 1132 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) ∈ Fin)
102101ad2antlr 727 . . . . . . . . 9 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (𝑁 WWalksN 𝐺) ∈ Fin)
103 rabfi 9301 . . . . . . . . 9 ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
104102, 103syl 17 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin)
105 rusgrusgr 29597 . . . . . . . . . . . . 13 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
106 simp1 1135 . . . . . . . . . . . . 13 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝑉 ∈ Fin)
107105, 106anim12i 613 . . . . . . . . . . . 12 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
1083isfusgr 29350 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
109107, 108sylibr 234 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐺 ∈ FinUSGraph)
110 simpl 482 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾)
111 ne0i 4347 . . . . . . . . . . . . 13 (𝑃𝑉𝑉 ≠ ∅)
1121113ad2ant2 1133 . . . . . . . . . . . 12 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → 𝑉 ≠ ∅)
113112adantl 481 . . . . . . . . . . 11 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝑉 ≠ ∅)
1143frusgrnn0 29604 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾𝑉 ≠ ∅) → 𝐾 ∈ ℕ0)
115109, 110, 113, 114syl3anc 1370 . . . . . . . . . 10 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐾 ∈ ℕ0)
116115nn0cnd 12587 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → 𝐾 ∈ ℂ)
117116adantr 480 . . . . . . . 8 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → 𝐾 ∈ ℂ)
118 fsumconst 15823 . . . . . . . 8 (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin ∧ 𝐾 ∈ ℂ) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾))
119104, 117, 118syl2anc 584 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾))
120116, 2expp1d 14184 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝐾↑(𝑁 + 1)) = ((𝐾𝑁) · 𝐾))
121120adantr 480 . . . . . . 7 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (𝐾↑(𝑁 + 1)) = ((𝐾𝑁) · 𝐾))
12298, 119, 1213eqtr4d 2785 . . . . . 6 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = (𝐾↑(𝑁 + 1)))
12396, 122eqtrd 2775 . . . . 5 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 prefix (𝑁 + 1)) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {(lastS‘𝑦), (lastS‘𝑤)} ∈ (Edg‘𝐺))}) = (𝐾↑(𝑁 + 1)))
12416, 40, 1233eqtrd 2779 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))
125 peano2nn0 12564 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1261253ad2ant3 1134 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
127126adantl 481 . . . . . 6 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈ ℕ0)
1283, 4rusgrnumwwlklem 30000 . . . . . . 7 ((𝑃𝑉 ∧ (𝑁 + 1) ∈ ℕ0) → (𝑃𝐿(𝑁 + 1)) = (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
129128eqeq1d 2737 . . . . . 6 ((𝑃𝑉 ∧ (𝑁 + 1) ∈ ℕ0) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
1301, 127, 129syl2anc 584 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
131130adantr 480 . . . 4 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (♯‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))))
132124, 131mpbird 257 . . 3 (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) ∧ (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁)) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)))
133132ex 412 . 2 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
1347, 133sylbid 240 1 ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  c0 4339  {cpr 4633   class class class wbr 5148  cfv 6563  (class class class)co 7431  cmpo 7433  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  0cn0 12524  0*cxnn0 12597  ..^cfzo 13691  cexp 14099  chash 14366  Word cword 14549  lastSclsw 14597   prefix cpfx 14705  Σcsu 15719  Vtxcvtx 29028  Edgcedg 29079  USGraphcusgr 29181  FinUSGraphcfusgr 29348   RegUSGraph crusgr 29589   WWalksN cwwlksn 29856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-xadd 13153  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-vtx 29030  df-iedg 29031  df-edg 29080  df-uhgr 29090  df-ushgr 29091  df-upgr 29114  df-umgr 29115  df-uspgr 29182  df-usgr 29183  df-fusgr 29349  df-nbgr 29365  df-vtxdg 29499  df-rgr 29590  df-rusgr 29591  df-wwlks 29860  df-wwlksn 29861
This theorem is referenced by:  rusgrnumwwlk  30005
  Copyright terms: Public domain W3C validator