MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkl1 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkl1 29818
Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkl1.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
rusgrnumwwlkl1 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = 𝐾)
Distinct variable groups:   𝑀,𝐺   𝑀,𝐾   𝑀,𝑃   𝑀,𝑉

Proof of Theorem rusgrnumwwlkl1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn0 12513 . . . . . . . . 9 1 ∈ β„•0
2 iswwlksn 29688 . . . . . . . . 9 (1 ∈ β„•0 β†’ (𝑀 ∈ (1 WWalksN 𝐺) ↔ (𝑀 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = (1 + 1))))
31, 2ax-mp 5 . . . . . . . 8 (𝑀 ∈ (1 WWalksN 𝐺) ↔ (𝑀 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = (1 + 1)))
4 rusgrnumwwlkl1.v . . . . . . . . . 10 𝑉 = (Vtxβ€˜πΊ)
5 eqid 2725 . . . . . . . . . 10 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
64, 5iswwlks 29686 . . . . . . . . 9 (𝑀 ∈ (WWalksβ€˜πΊ) ↔ (𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
76anbi1i 622 . . . . . . . 8 ((𝑀 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = (1 + 1)) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)))
83, 7bitri 274 . . . . . . 7 (𝑀 ∈ (1 WWalksN 𝐺) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)))
98a1i 11 . . . . . 6 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (𝑀 ∈ (1 WWalksN 𝐺) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1))))
109anbi1d 629 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((𝑀 ∈ (1 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑃) ↔ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ∧ (π‘€β€˜0) = 𝑃)))
11 1p1e2 12362 . . . . . . . . . . 11 (1 + 1) = 2
1211eqeq2i 2738 . . . . . . . . . 10 ((β™―β€˜π‘€) = (1 + 1) ↔ (β™―β€˜π‘€) = 2)
1312a1i 11 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((β™―β€˜π‘€) = (1 + 1) ↔ (β™―β€˜π‘€) = 2))
1413anbi2d 628 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2)))
15 3anass 1092 . . . . . . . . . . . 12 ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 β‰  βˆ… ∧ (𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))))
1615a1i 11 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 β‰  βˆ… ∧ (𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))))
17 fveq2 6890 . . . . . . . . . . . . . . . 16 (𝑀 = βˆ… β†’ (β™―β€˜π‘€) = (β™―β€˜βˆ…))
18 hash0 14353 . . . . . . . . . . . . . . . 16 (β™―β€˜βˆ…) = 0
1917, 18eqtrdi 2781 . . . . . . . . . . . . . . 15 (𝑀 = βˆ… β†’ (β™―β€˜π‘€) = 0)
20 2ne0 12341 . . . . . . . . . . . . . . . . 17 2 β‰  0
2120nesymi 2988 . . . . . . . . . . . . . . . 16 Β¬ 0 = 2
22 eqeq1 2729 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘€) = 0 β†’ ((β™―β€˜π‘€) = 2 ↔ 0 = 2))
2321, 22mtbiri 326 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘€) = 0 β†’ Β¬ (β™―β€˜π‘€) = 2)
2419, 23syl 17 . . . . . . . . . . . . . 14 (𝑀 = βˆ… β†’ Β¬ (β™―β€˜π‘€) = 2)
2524necon2ai 2960 . . . . . . . . . . . . 13 ((β™―β€˜π‘€) = 2 β†’ 𝑀 β‰  βˆ…)
2625adantl 480 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ 𝑀 β‰  βˆ…)
2726biantrurd 531 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 β‰  βˆ… ∧ (𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))))
28 oveq1 7420 . . . . . . . . . . . . . . . . 17 ((β™―β€˜π‘€) = 2 β†’ ((β™―β€˜π‘€) βˆ’ 1) = (2 βˆ’ 1))
29 2m1e1 12363 . . . . . . . . . . . . . . . . 17 (2 βˆ’ 1) = 1
3028, 29eqtrdi 2781 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘€) = 2 β†’ ((β™―β€˜π‘€) βˆ’ 1) = 1)
3130oveq2d 7429 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘€) = 2 β†’ (0..^((β™―β€˜π‘€) βˆ’ 1)) = (0..^1))
3231adantl 480 . . . . . . . . . . . . . 14 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ (0..^((β™―β€˜π‘€) βˆ’ 1)) = (0..^1))
3332raleqdv 3315 . . . . . . . . . . . . 13 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^1){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
34 fzo01 13741 . . . . . . . . . . . . . . 15 (0..^1) = {0}
3534raleqi 3313 . . . . . . . . . . . . . 14 (βˆ€π‘– ∈ (0..^1){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ {0} {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
36 c0ex 11233 . . . . . . . . . . . . . . 15 0 ∈ V
37 fveq2 6890 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 β†’ (π‘€β€˜π‘–) = (π‘€β€˜0))
38 fv0p1e1 12360 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 β†’ (π‘€β€˜(𝑖 + 1)) = (π‘€β€˜1))
3937, 38preq12d 4742 . . . . . . . . . . . . . . . 16 (𝑖 = 0 β†’ {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} = {(π‘€β€˜0), (π‘€β€˜1)})
4039eleq1d 2810 . . . . . . . . . . . . . . 15 (𝑖 = 0 β†’ ({(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
4136, 40ralsn 4682 . . . . . . . . . . . . . 14 (βˆ€π‘– ∈ {0} {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))
4235, 41bitri 274 . . . . . . . . . . . . 13 (βˆ€π‘– ∈ (0..^1){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))
4333, 42bitrdi 286 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
4443anbi2d 628 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
4516, 27, 443bitr2d 306 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
4645ex 411 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((β™―β€˜π‘€) = 2 β†’ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))))
4746pm5.32rd 576 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2)))
4814, 47bitrd 278 . . . . . . 7 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2)))
4948anbi1d 629 . . . . . 6 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ∧ (π‘€β€˜0) = 𝑃) ↔ (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2) ∧ (π‘€β€˜0) = 𝑃)))
50 anass 467 . . . . . 6 ((((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2) ∧ (π‘€β€˜0) = 𝑃) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)))
5149, 50bitrdi 286 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ∧ (π‘€β€˜0) = 𝑃) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃))))
52 anass 467 . . . . . . 7 (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (𝑀 ∈ Word 𝑉 ∧ ({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃))))
53 ancom 459 . . . . . . . . 9 (({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
54 df-3an 1086 . . . . . . . . 9 (((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ↔ (((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
5553, 54bitr4i 277 . . . . . . . 8 (({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
5655anbi2i 621 . . . . . . 7 ((𝑀 ∈ Word 𝑉 ∧ ({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃))) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
5752, 56bitri 274 . . . . . 6 (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
5857a1i 11 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))))
5910, 51, 583bitrd 304 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((𝑀 ∈ (1 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑃) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))))
6059rabbidva2 3421 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ {𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))})
6160fveq2d 6894 . 2 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (β™―β€˜{𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))}))
624rusgrnumwrdl2 29439 . 2 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))}) = 𝐾)
6361, 62eqtrd 2765 1 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  {crab 3419  βˆ…c0 4319  {csn 4625  {cpr 4627   class class class wbr 5144  β€˜cfv 6543  (class class class)co 7413  0cc0 11133  1c1 11134   + caddc 11136   βˆ’ cmin 11469  2c2 12292  β„•0cn0 12497  ..^cfzo 13654  β™―chash 14316  Word cword 14491  Vtxcvtx 28848  Edgcedg 28899   RegUSGraph crusgr 29409  WWalkscwwlks 29675   WWalksN cwwlksn 29676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-xadd 13120  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-edg 28900  df-uhgr 28910  df-ushgr 28911  df-upgr 28934  df-umgr 28935  df-uspgr 29002  df-usgr 29003  df-nbgr 29185  df-vtxdg 29319  df-rgr 29410  df-rusgr 29411  df-wwlks 29680  df-wwlksn 29681
This theorem is referenced by:  rusgrnumwwlkb1  29822
  Copyright terms: Public domain W3C validator