MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkl1 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkl1 29212
Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkl1.v 𝑉 = (Vtxβ€˜πΊ)
Assertion
Ref Expression
rusgrnumwwlkl1 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = 𝐾)
Distinct variable groups:   𝑀,𝐺   𝑀,𝐾   𝑀,𝑃   𝑀,𝑉

Proof of Theorem rusgrnumwwlkl1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn0 12485 . . . . . . . . 9 1 ∈ β„•0
2 iswwlksn 29082 . . . . . . . . 9 (1 ∈ β„•0 β†’ (𝑀 ∈ (1 WWalksN 𝐺) ↔ (𝑀 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = (1 + 1))))
31, 2ax-mp 5 . . . . . . . 8 (𝑀 ∈ (1 WWalksN 𝐺) ↔ (𝑀 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = (1 + 1)))
4 rusgrnumwwlkl1.v . . . . . . . . . 10 𝑉 = (Vtxβ€˜πΊ)
5 eqid 2733 . . . . . . . . . 10 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
64, 5iswwlks 29080 . . . . . . . . 9 (𝑀 ∈ (WWalksβ€˜πΊ) ↔ (𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
76anbi1i 625 . . . . . . . 8 ((𝑀 ∈ (WWalksβ€˜πΊ) ∧ (β™―β€˜π‘€) = (1 + 1)) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)))
83, 7bitri 275 . . . . . . 7 (𝑀 ∈ (1 WWalksN 𝐺) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)))
98a1i 11 . . . . . 6 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (𝑀 ∈ (1 WWalksN 𝐺) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1))))
109anbi1d 631 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((𝑀 ∈ (1 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑃) ↔ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ∧ (π‘€β€˜0) = 𝑃)))
11 1p1e2 12334 . . . . . . . . . . 11 (1 + 1) = 2
1211eqeq2i 2746 . . . . . . . . . 10 ((β™―β€˜π‘€) = (1 + 1) ↔ (β™―β€˜π‘€) = 2)
1312a1i 11 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((β™―β€˜π‘€) = (1 + 1) ↔ (β™―β€˜π‘€) = 2))
1413anbi2d 630 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ↔ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2)))
15 3anass 1096 . . . . . . . . . . . 12 ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 β‰  βˆ… ∧ (𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))))
1615a1i 11 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 β‰  βˆ… ∧ (𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))))
17 fveq2 6889 . . . . . . . . . . . . . . . 16 (𝑀 = βˆ… β†’ (β™―β€˜π‘€) = (β™―β€˜βˆ…))
18 hash0 14324 . . . . . . . . . . . . . . . 16 (β™―β€˜βˆ…) = 0
1917, 18eqtrdi 2789 . . . . . . . . . . . . . . 15 (𝑀 = βˆ… β†’ (β™―β€˜π‘€) = 0)
20 2ne0 12313 . . . . . . . . . . . . . . . . 17 2 β‰  0
2120nesymi 2999 . . . . . . . . . . . . . . . 16 Β¬ 0 = 2
22 eqeq1 2737 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘€) = 0 β†’ ((β™―β€˜π‘€) = 2 ↔ 0 = 2))
2321, 22mtbiri 327 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘€) = 0 β†’ Β¬ (β™―β€˜π‘€) = 2)
2419, 23syl 17 . . . . . . . . . . . . . 14 (𝑀 = βˆ… β†’ Β¬ (β™―β€˜π‘€) = 2)
2524necon2ai 2971 . . . . . . . . . . . . 13 ((β™―β€˜π‘€) = 2 β†’ 𝑀 β‰  βˆ…)
2625adantl 483 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ 𝑀 β‰  βˆ…)
2726biantrurd 534 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 β‰  βˆ… ∧ (𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))))
28 oveq1 7413 . . . . . . . . . . . . . . . . 17 ((β™―β€˜π‘€) = 2 β†’ ((β™―β€˜π‘€) βˆ’ 1) = (2 βˆ’ 1))
29 2m1e1 12335 . . . . . . . . . . . . . . . . 17 (2 βˆ’ 1) = 1
3028, 29eqtrdi 2789 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘€) = 2 β†’ ((β™―β€˜π‘€) βˆ’ 1) = 1)
3130oveq2d 7422 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘€) = 2 β†’ (0..^((β™―β€˜π‘€) βˆ’ 1)) = (0..^1))
3231adantl 483 . . . . . . . . . . . . . 14 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ (0..^((β™―β€˜π‘€) βˆ’ 1)) = (0..^1))
3332raleqdv 3326 . . . . . . . . . . . . 13 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ (0..^1){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
34 fzo01 13711 . . . . . . . . . . . . . . 15 (0..^1) = {0}
3534raleqi 3324 . . . . . . . . . . . . . 14 (βˆ€π‘– ∈ (0..^1){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ βˆ€π‘– ∈ {0} {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ))
36 c0ex 11205 . . . . . . . . . . . . . . 15 0 ∈ V
37 fveq2 6889 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 β†’ (π‘€β€˜π‘–) = (π‘€β€˜0))
38 fv0p1e1 12332 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 β†’ (π‘€β€˜(𝑖 + 1)) = (π‘€β€˜1))
3937, 38preq12d 4745 . . . . . . . . . . . . . . . 16 (𝑖 = 0 β†’ {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} = {(π‘€β€˜0), (π‘€β€˜1)})
4039eleq1d 2819 . . . . . . . . . . . . . . 15 (𝑖 = 0 β†’ ({(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
4136, 40ralsn 4685 . . . . . . . . . . . . . 14 (βˆ€π‘– ∈ {0} {(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))
4235, 41bitri 275 . . . . . . . . . . . . 13 (βˆ€π‘– ∈ (0..^1){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))
4333, 42bitrdi 287 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ) ↔ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
4443anbi2d 630 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
4516, 27, 443bitr2d 307 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) ∧ (β™―β€˜π‘€) = 2) β†’ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
4645ex 414 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((β™―β€˜π‘€) = 2 β†’ ((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ↔ (𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))))
4746pm5.32rd 579 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2)))
4814, 47bitrd 279 . . . . . . 7 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2)))
4948anbi1d 631 . . . . . 6 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ∧ (π‘€β€˜0) = 𝑃) ↔ (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2) ∧ (π‘€β€˜0) = 𝑃)))
50 anass 470 . . . . . 6 ((((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = 2) ∧ (π‘€β€˜0) = 𝑃) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)))
5149, 50bitrdi 287 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((((𝑀 β‰  βˆ… ∧ 𝑀 ∈ Word 𝑉 ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘€) βˆ’ 1)){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) ∧ (β™―β€˜π‘€) = (1 + 1)) ∧ (π‘€β€˜0) = 𝑃) ↔ ((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃))))
52 anass 470 . . . . . . 7 (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (𝑀 ∈ Word 𝑉 ∧ ({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃))))
53 ancom 462 . . . . . . . . 9 (({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
54 df-3an 1090 . . . . . . . . 9 (((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ↔ (((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃) ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
5553, 54bitr4i 278 . . . . . . . 8 (({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))
5655anbi2i 624 . . . . . . 7 ((𝑀 ∈ Word 𝑉 ∧ ({(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃))) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
5752, 56bitri 275 . . . . . 6 (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))))
5857a1i 11 . . . . 5 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (((𝑀 ∈ Word 𝑉 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)) ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃)) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))))
5910, 51, 583bitrd 305 . . . 4 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ ((𝑀 ∈ (1 WWalksN 𝐺) ∧ (π‘€β€˜0) = 𝑃) ↔ (𝑀 ∈ Word 𝑉 ∧ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ)))))
6059rabbidva2 3435 . . 3 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ {𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃} = {𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))})
6160fveq2d 6893 . 2 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = (β™―β€˜{𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))}))
624rusgrnumwrdl2 28833 . 2 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ Word 𝑉 ∣ ((β™―β€˜π‘€) = 2 ∧ (π‘€β€˜0) = 𝑃 ∧ {(π‘€β€˜0), (π‘€β€˜1)} ∈ (Edgβ€˜πΊ))}) = 𝐾)
6361, 62eqtrd 2773 1 ((𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉) β†’ (β™―β€˜{𝑀 ∈ (1 WWalksN 𝐺) ∣ (π‘€β€˜0) = 𝑃}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  {crab 3433  βˆ…c0 4322  {csn 4628  {cpr 4630   class class class wbr 5148  β€˜cfv 6541  (class class class)co 7406  0cc0 11107  1c1 11108   + caddc 11110   βˆ’ cmin 11441  2c2 12264  β„•0cn0 12469  ..^cfzo 13624  β™―chash 14287  Word cword 14461  Vtxcvtx 28246  Edgcedg 28297   RegUSGraph crusgr 28803  WWalkscwwlks 29069   WWalksN cwwlksn 29070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-oadd 8467  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-xadd 13090  df-fz 13482  df-fzo 13625  df-hash 14288  df-word 14462  df-edg 28298  df-uhgr 28308  df-ushgr 28309  df-upgr 28332  df-umgr 28333  df-uspgr 28400  df-usgr 28401  df-nbgr 28580  df-vtxdg 28713  df-rgr 28804  df-rusgr 28805  df-wwlks 29074  df-wwlksn 29075
This theorem is referenced by:  rusgrnumwwlkb1  29216
  Copyright terms: Public domain W3C validator