MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkl1 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkl1 27365
Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkl1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwwlkl1 ((𝐺RegUSGraph𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑃   𝑤,𝑉

Proof of Theorem rusgrnumwwlkl1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11665 . . . . . . . . 9 1 ∈ ℕ0
2 iswwlksn 27204 . . . . . . . . 9 (1 ∈ ℕ0 → (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1))))
31, 2ax-mp 5 . . . . . . . 8 (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)))
4 rusgrnumwwlkl1.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
5 eqid 2778 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 27202 . . . . . . . . 9 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
76anbi1i 617 . . . . . . . 8 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
83, 7bitri 267 . . . . . . 7 (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
98a1i 11 . . . . . 6 ((𝐺RegUSGraph𝐾𝑃𝑉) → (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1))))
109anbi1d 623 . . . . 5 ((𝐺RegUSGraph𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃)))
11 1p1e2 11512 . . . . . . . . . . 11 (1 + 1) = 2
1211eqeq2i 2790 . . . . . . . . . 10 ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2)
1312a1i 11 . . . . . . . . 9 ((𝐺RegUSGraph𝐾𝑃𝑉) → ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2))
1413anbi2d 622 . . . . . . . 8 ((𝐺RegUSGraph𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
15 3anass 1079 . . . . . . . . . . . 12 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1615a1i 11 . . . . . . . . . . 11 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
17 fveq2 6448 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
18 hash0 13479 . . . . . . . . . . . . . . . 16 (♯‘∅) = 0
1917, 18syl6eq 2830 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = 0)
20 2ne0 11491 . . . . . . . . . . . . . . . . 17 2 ≠ 0
2120nesymi 3026 . . . . . . . . . . . . . . . 16 ¬ 0 = 2
22 eqeq1 2782 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 0 → ((♯‘𝑤) = 2 ↔ 0 = 2))
2321, 22mtbiri 319 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 0 → ¬ (♯‘𝑤) = 2)
2419, 23syl 17 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ¬ (♯‘𝑤) = 2)
2524necon2ai 2998 . . . . . . . . . . . . 13 ((♯‘𝑤) = 2 → 𝑤 ≠ ∅)
2625adantl 475 . . . . . . . . . . . 12 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → 𝑤 ≠ ∅)
2726biantrurd 528 . . . . . . . . . . 11 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
28 oveq1 6931 . . . . . . . . . . . . . . . . 17 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = (2 − 1))
29 2m1e1 11513 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
3028, 29syl6eq 2830 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = 1)
3130oveq2d 6940 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 2 → (0..^((♯‘𝑤) − 1)) = (0..^1))
3231adantl 475 . . . . . . . . . . . . . 14 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (0..^((♯‘𝑤) − 1)) = (0..^1))
3332raleqdv 3340 . . . . . . . . . . . . 13 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 fzo01 12874 . . . . . . . . . . . . . . 15 (0..^1) = {0}
3534raleqi 3338 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
36 c0ex 10372 . . . . . . . . . . . . . . 15 0 ∈ V
37 fveq2 6448 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
38 fv0p1e1 11510 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
3937, 38preq12d 4508 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
4039eleq1d 2844 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4136, 40ralsn 4450 . . . . . . . . . . . . . 14 (∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4235, 41bitri 267 . . . . . . . . . . . . 13 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4333, 42syl6bb 279 . . . . . . . . . . . 12 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4443anbi2d 622 . . . . . . . . . . 11 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4516, 27, 443bitr2d 299 . . . . . . . . . 10 (((𝐺RegUSGraph𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4645ex 403 . . . . . . . . 9 ((𝐺RegUSGraph𝐾𝑃𝑉) → ((♯‘𝑤) = 2 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
4746pm5.32rd 573 . . . . . . . 8 ((𝐺RegUSGraph𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4814, 47bitrd 271 . . . . . . 7 ((𝐺RegUSGraph𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4948anbi1d 623 . . . . . 6 ((𝐺RegUSGraph𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃)))
50 anass 462 . . . . . 6 ((((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)))
5149, 50syl6bb 279 . . . . 5 ((𝐺RegUSGraph𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
52 anass 462 . . . . . . 7 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
53 ancom 454 . . . . . . . . 9 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
54 df-3an 1073 . . . . . . . . 9 (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5553, 54bitr4i 270 . . . . . . . 8 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5655anbi2i 616 . . . . . . 7 ((𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5752, 56bitri 267 . . . . . 6 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5857a1i 11 . . . . 5 ((𝐺RegUSGraph𝐾𝑃𝑉) → (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
5910, 51, 583bitrd 297 . . . 4 ((𝐺RegUSGraph𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
6059rabbidva2 3383 . . 3 ((𝐺RegUSGraph𝐾𝑃𝑉) → {𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))})
6160fveq2d 6452 . 2 ((𝐺RegUSGraph𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}))
624rusgrnumwrdl2 26951 . 2 ((𝐺RegUSGraph𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
6361, 62eqtrd 2814 1 ((𝐺RegUSGraph𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  {crab 3094  c0 4141  {csn 4398  {cpr 4400   class class class wbr 4888  cfv 6137  (class class class)co 6924  0cc0 10274  1c1 10275   + caddc 10277  cmin 10608  2c2 11435  0cn0 11647  ..^cfzo 12789  chash 13441  Word cword 13605  Vtxcvtx 26361  Edgcedg 26412  RegUSGraphcrusgr 26921  WWalkscwwlks 27191   WWalksN cwwlksn 27192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11380  df-2 11443  df-n0 11648  df-xnn0 11720  df-z 11734  df-uz 11998  df-xadd 12263  df-fz 12649  df-fzo 12790  df-hash 13442  df-word 13606  df-edg 26413  df-uhgr 26423  df-ushgr 26424  df-upgr 26447  df-umgr 26448  df-uspgr 26516  df-usgr 26517  df-nbgr 26697  df-vtxdg 26831  df-rgr 26922  df-rusgr 26923  df-wwlks 27196  df-wwlksn 27197
This theorem is referenced by:  rusgrnumwwlkb1  27369
  Copyright terms: Public domain W3C validator