MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkl1 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkl1 29913
Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkl1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwwlkl1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑃   𝑤,𝑉

Proof of Theorem rusgrnumwwlkl1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn0 12400 . . . . . . . . 9 1 ∈ ℕ0
2 iswwlksn 29783 . . . . . . . . 9 (1 ∈ ℕ0 → (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1))))
31, 2ax-mp 5 . . . . . . . 8 (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)))
4 rusgrnumwwlkl1.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
5 eqid 2729 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 29781 . . . . . . . . 9 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
76anbi1i 624 . . . . . . . 8 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
83, 7bitri 275 . . . . . . 7 (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
98a1i 11 . . . . . 6 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1))))
109anbi1d 631 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃)))
11 1p1e2 12248 . . . . . . . . . . 11 (1 + 1) = 2
1211eqeq2i 2742 . . . . . . . . . 10 ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2)
1312a1i 11 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2))
1413anbi2d 630 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
15 3anass 1094 . . . . . . . . . . . 12 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1615a1i 11 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
17 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
18 hash0 14274 . . . . . . . . . . . . . . . 16 (♯‘∅) = 0
1917, 18eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = 0)
20 2ne0 12232 . . . . . . . . . . . . . . . . 17 2 ≠ 0
2120nesymi 2982 . . . . . . . . . . . . . . . 16 ¬ 0 = 2
22 eqeq1 2733 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 0 → ((♯‘𝑤) = 2 ↔ 0 = 2))
2321, 22mtbiri 327 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 0 → ¬ (♯‘𝑤) = 2)
2419, 23syl 17 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ¬ (♯‘𝑤) = 2)
2524necon2ai 2954 . . . . . . . . . . . . 13 ((♯‘𝑤) = 2 → 𝑤 ≠ ∅)
2625adantl 481 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → 𝑤 ≠ ∅)
2726biantrurd 532 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
28 oveq1 7356 . . . . . . . . . . . . . . . . 17 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = (2 − 1))
29 2m1e1 12249 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
3028, 29eqtrdi 2780 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = 1)
3130oveq2d 7365 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 2 → (0..^((♯‘𝑤) − 1)) = (0..^1))
3231adantl 481 . . . . . . . . . . . . . 14 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (0..^((♯‘𝑤) − 1)) = (0..^1))
3332raleqdv 3289 . . . . . . . . . . . . 13 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 fzo01 13650 . . . . . . . . . . . . . . 15 (0..^1) = {0}
3534raleqi 3287 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
36 c0ex 11109 . . . . . . . . . . . . . . 15 0 ∈ V
37 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
38 fv0p1e1 12246 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
3937, 38preq12d 4693 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
4039eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4136, 40ralsn 4633 . . . . . . . . . . . . . 14 (∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4235, 41bitri 275 . . . . . . . . . . . . 13 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4333, 42bitrdi 287 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4443anbi2d 630 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4516, 27, 443bitr2d 307 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4645ex 412 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((♯‘𝑤) = 2 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
4746pm5.32rd 578 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4814, 47bitrd 279 . . . . . . 7 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4948anbi1d 631 . . . . . 6 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃)))
50 anass 468 . . . . . 6 ((((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)))
5149, 50bitrdi 287 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
52 anass 468 . . . . . . 7 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
53 ancom 460 . . . . . . . . 9 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
54 df-3an 1088 . . . . . . . . 9 (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5553, 54bitr4i 278 . . . . . . . 8 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5655anbi2i 623 . . . . . . 7 ((𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5752, 56bitri 275 . . . . . 6 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5857a1i 11 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
5910, 51, 583bitrd 305 . . . 4 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
6059rabbidva2 3396 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → {𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))})
6160fveq2d 6826 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}))
624rusgrnumwrdl2 29532 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
6361, 62eqtrd 2764 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3394  c0 4284  {csn 4577  {cpr 4579   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347  2c2 12183  0cn0 12384  ..^cfzo 13557  chash 14237  Word cword 14420  Vtxcvtx 28941  Edgcedg 28992   RegUSGraph crusgr 29502  WWalkscwwlks 29770   WWalksN cwwlksn 29771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-xadd 13015  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-edg 28993  df-uhgr 29003  df-ushgr 29004  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-nbgr 29278  df-vtxdg 29412  df-rgr 29503  df-rusgr 29504  df-wwlks 29775  df-wwlksn 29776
This theorem is referenced by:  rusgrnumwwlkb1  29917
  Copyright terms: Public domain W3C validator