Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkl1 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkl1 27798
 Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypothesis
Ref Expression
rusgrnumwwlkl1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrnumwwlkl1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑃   𝑤,𝑉

Proof of Theorem rusgrnumwwlkl1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11919 . . . . . . . . 9 1 ∈ ℕ0
2 iswwlksn 27668 . . . . . . . . 9 (1 ∈ ℕ0 → (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1))))
31, 2ax-mp 5 . . . . . . . 8 (𝑤 ∈ (1 WWalksN 𝐺) ↔ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)))
4 rusgrnumwwlkl1.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
5 eqid 2798 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
64, 5iswwlks 27666 . . . . . . . . 9 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
76anbi1i 626 . . . . . . . 8 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
83, 7bitri 278 . . . . . . 7 (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)))
98a1i 11 . . . . . 6 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (𝑤 ∈ (1 WWalksN 𝐺) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1))))
109anbi1d 632 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃)))
11 1p1e2 11768 . . . . . . . . . . 11 (1 + 1) = 2
1211eqeq2i 2811 . . . . . . . . . 10 ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2)
1312a1i 11 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((♯‘𝑤) = (1 + 1) ↔ (♯‘𝑤) = 2))
1413anbi2d 631 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
15 3anass 1092 . . . . . . . . . . . 12 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1615a1i 11 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
17 fveq2 6655 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
18 hash0 13744 . . . . . . . . . . . . . . . 16 (♯‘∅) = 0
1917, 18eqtrdi 2849 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = 0)
20 2ne0 11747 . . . . . . . . . . . . . . . . 17 2 ≠ 0
2120nesymi 3044 . . . . . . . . . . . . . . . 16 ¬ 0 = 2
22 eqeq1 2802 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 0 → ((♯‘𝑤) = 2 ↔ 0 = 2))
2321, 22mtbiri 330 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 0 → ¬ (♯‘𝑤) = 2)
2419, 23syl 17 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ¬ (♯‘𝑤) = 2)
2524necon2ai 3016 . . . . . . . . . . . . 13 ((♯‘𝑤) = 2 → 𝑤 ≠ ∅)
2625adantl 485 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → 𝑤 ≠ ∅)
2726biantrurd 536 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ≠ ∅ ∧ (𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))))
28 oveq1 7152 . . . . . . . . . . . . . . . . 17 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = (2 − 1))
29 2m1e1 11769 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
3028, 29eqtrdi 2849 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 2 → ((♯‘𝑤) − 1) = 1)
3130oveq2d 7161 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 2 → (0..^((♯‘𝑤) − 1)) = (0..^1))
3231adantl 485 . . . . . . . . . . . . . 14 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (0..^((♯‘𝑤) − 1)) = (0..^1))
3332raleqdv 3365 . . . . . . . . . . . . 13 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
34 fzo01 13134 . . . . . . . . . . . . . . 15 (0..^1) = {0}
3534raleqi 3363 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
36 c0ex 10642 . . . . . . . . . . . . . . 15 0 ∈ V
37 fveq2 6655 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤𝑖) = (𝑤‘0))
38 fv0p1e1 11766 . . . . . . . . . . . . . . . . 17 (𝑖 = 0 → (𝑤‘(𝑖 + 1)) = (𝑤‘1))
3937, 38preq12d 4640 . . . . . . . . . . . . . . . 16 (𝑖 = 0 → {(𝑤𝑖), (𝑤‘(𝑖 + 1))} = {(𝑤‘0), (𝑤‘1)})
4039eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑖 = 0 → ({(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4136, 40ralsn 4582 . . . . . . . . . . . . . 14 (∀𝑖 ∈ {0} {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4235, 41bitri 278 . . . . . . . . . . . . 13 (∀𝑖 ∈ (0..^1){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))
4333, 42syl6bb 290 . . . . . . . . . . . 12 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
4443anbi2d 631 . . . . . . . . . . 11 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4516, 27, 443bitr2d 310 . . . . . . . . . 10 (((𝐺 RegUSGraph 𝐾𝑃𝑉) ∧ (♯‘𝑤) = 2) → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
4645ex 416 . . . . . . . . 9 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((♯‘𝑤) = 2 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
4746pm5.32rd 581 . . . . . . . 8 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4814, 47bitrd 282 . . . . . . 7 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2)))
4948anbi1d 632 . . . . . 6 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃)))
50 anass 472 . . . . . 6 ((((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 2) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)))
5149, 50syl6bb 290 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (1 + 1)) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
52 anass 472 . . . . . . 7 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))))
53 ancom 464 . . . . . . . . 9 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
54 df-3an 1086 . . . . . . . . 9 (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ↔ (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃) ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5553, 54bitr4i 281 . . . . . . . 8 (({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))
5655anbi2i 625 . . . . . . 7 ((𝑤 ∈ Word 𝑉 ∧ ({(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃))) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5752, 56bitri 278 . . . . . 6 (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))))
5857a1i 11 . . . . 5 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (((𝑤 ∈ Word 𝑉 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)) ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃)) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
5910, 51, 583bitrd 308 . . . 4 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → ((𝑤 ∈ (1 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ (𝑤 ∈ Word 𝑉 ∧ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺)))))
6059rabbidva2 3424 . . 3 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → {𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))})
6160fveq2d 6659 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}))
624rusgrnumwrdl2 27420 . 2 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ (Edg‘𝐺))}) = 𝐾)
6361, 62eqtrd 2833 1 ((𝐺 RegUSGraph 𝐾𝑃𝑉) → (♯‘{𝑤 ∈ (1 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = 𝐾)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  {crab 3110  ∅c0 4246  {csn 4528  {cpr 4530   class class class wbr 5034  ‘cfv 6332  (class class class)co 7145  0cc0 10544  1c1 10545   + caddc 10547   − cmin 10877  2c2 11698  ℕ0cn0 11903  ..^cfzo 13048  ♯chash 13706  Word cword 13877  Vtxcvtx 26833  Edgcedg 26884   RegUSGraph crusgr 27390  WWalkscwwlks 27655   WWalksN cwwlksn 27656 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-dju 9332  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-n0 11904  df-xnn0 11976  df-z 11990  df-uz 12252  df-xadd 12516  df-fz 12906  df-fzo 13049  df-hash 13707  df-word 13878  df-edg 26885  df-uhgr 26895  df-ushgr 26896  df-upgr 26919  df-umgr 26920  df-uspgr 26987  df-usgr 26988  df-nbgr 27167  df-vtxdg 27300  df-rgr 27391  df-rusgr 27392  df-wwlks 27660  df-wwlksn 27661 This theorem is referenced by:  rusgrnumwwlkb1  27802
 Copyright terms: Public domain W3C validator