Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rzalf Structured version   Visualization version   GIF version

Theorem rzalf 42560
Description: A version of rzal 4439 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
rzalf.1 𝑥 𝐴 = ∅
Assertion
Ref Expression
rzalf (𝐴 = ∅ → ∀𝑥𝐴 𝜑)

Proof of Theorem rzalf
StepHypRef Expression
1 rzalf.1 . 2 𝑥 𝐴 = ∅
2 ne0i 4268 . . . 4 (𝑥𝐴𝐴 ≠ ∅)
32necon2bi 2974 . . 3 (𝐴 = ∅ → ¬ 𝑥𝐴)
43pm2.21d 121 . 2 (𝐴 = ∅ → (𝑥𝐴𝜑))
51, 4ralrimi 3141 1 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wnf 1786  wcel 2106  wral 3064  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-dif 3890  df-nul 4257
This theorem is referenced by:  stoweidlem18  43559  stoweidlem28  43569  stoweidlem55  43596
  Copyright terms: Public domain W3C validator