Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rzalf | Structured version Visualization version GIF version |
Description: A version of rzal 4402 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rzalf.1 | ⊢ Ⅎ𝑥 𝐴 = ∅ |
Ref | Expression |
---|---|
rzalf | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzalf.1 | . 2 ⊢ Ⅎ𝑥 𝐴 = ∅ | |
2 | ne0i 4234 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐴 ≠ ∅) | |
3 | 2 | necon2bi 2982 | . . 3 ⊢ (𝐴 = ∅ → ¬ 𝑥 ∈ 𝐴) |
4 | 3 | pm2.21d 121 | . 2 ⊢ (𝐴 = ∅ → (𝑥 ∈ 𝐴 → 𝜑)) |
5 | 1, 4 | ralrimi 3145 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 ∀wral 3071 ∅c0 4226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ne 2953 df-ral 3076 df-dif 3862 df-nul 4227 |
This theorem is referenced by: stoweidlem18 43027 stoweidlem28 43037 stoweidlem55 43064 |
Copyright terms: Public domain | W3C validator |