Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelrnbf Structured version   Visualization version   GIF version

Theorem fvelrnbf 45023
Description: A version of fvelrnb 6969 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fvelrnbf.1 𝑥𝐴
fvelrnbf.2 𝑥𝐵
fvelrnbf.3 𝑥𝐹
Assertion
Ref Expression
fvelrnbf (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))

Proof of Theorem fvelrnbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 6969 . 2 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝐵))
2 nfcv 2905 . . 3 𝑦𝐴
3 fvelrnbf.1 . . 3 𝑥𝐴
4 fvelrnbf.3 . . . . 5 𝑥𝐹
5 nfcv 2905 . . . . 5 𝑥𝑦
64, 5nffv 6916 . . . 4 𝑥(𝐹𝑦)
7 fvelrnbf.2 . . . 4 𝑥𝐵
86, 7nfeq 2919 . . 3 𝑥(𝐹𝑦) = 𝐵
9 nfv 1914 . . 3 𝑦(𝐹𝑥) = 𝐵
10 fveqeq2 6915 . . 3 (𝑦 = 𝑥 → ((𝐹𝑦) = 𝐵 ↔ (𝐹𝑥) = 𝐵))
112, 3, 8, 9, 10cbvrexfw 3305 . 2 (∃𝑦𝐴 (𝐹𝑦) = 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵)
121, 11bitrdi 287 1 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wnfc 2890  wrex 3070  ran crn 5686   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569
This theorem is referenced by:  refsumcn  45035  stoweidlem29  46044
  Copyright terms: Public domain W3C validator