![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelrnbf | Structured version Visualization version GIF version |
Description: A version of fvelrnb 6962 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fvelrnbf.1 | ⊢ Ⅎ𝑥𝐴 |
fvelrnbf.2 | ⊢ Ⅎ𝑥𝐵 |
fvelrnbf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
fvelrnbf | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 6962 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵)) | |
2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | fvelrnbf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | fvelrnbf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6910 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | fvelrnbf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfeq 2905 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = 𝐵 |
9 | nfv 1909 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = 𝐵 | |
10 | fveqeq2 6909 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = 𝐵 ↔ (𝐹‘𝑥) = 𝐵)) | |
11 | 2, 3, 8, 9, 10 | cbvrexfw 3292 | . 2 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
12 | 1, 11 | bitrdi 286 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 ∃wrex 3059 ran crn 5682 Fn wfn 6548 ‘cfv 6553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-iota 6505 df-fun 6555 df-fn 6556 df-fv 6561 |
This theorem is referenced by: refsumcn 44566 stoweidlem29 45587 |
Copyright terms: Public domain | W3C validator |