Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelrnbf | Structured version Visualization version GIF version |
Description: A version of fvelrnb 6812 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fvelrnbf.1 | ⊢ Ⅎ𝑥𝐴 |
fvelrnbf.2 | ⊢ Ⅎ𝑥𝐵 |
fvelrnbf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
fvelrnbf | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 6812 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵)) | |
2 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | fvelrnbf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | fvelrnbf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6766 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | fvelrnbf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfeq 2919 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = 𝐵 |
9 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = 𝐵 | |
10 | fveqeq2 6765 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = 𝐵 ↔ (𝐹‘𝑥) = 𝐵)) | |
11 | 2, 3, 8, 9, 10 | cbvrexfw 3360 | . 2 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
12 | 1, 11 | bitrdi 286 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∃wrex 3064 ran crn 5581 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: refsumcn 42462 stoweidlem29 43460 |
Copyright terms: Public domain | W3C validator |