Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelrnbf Structured version   Visualization version   GIF version

Theorem fvelrnbf 42450
Description: A version of fvelrnb 6812 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fvelrnbf.1 𝑥𝐴
fvelrnbf.2 𝑥𝐵
fvelrnbf.3 𝑥𝐹
Assertion
Ref Expression
fvelrnbf (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))

Proof of Theorem fvelrnbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 6812 . 2 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝐵))
2 nfcv 2906 . . 3 𝑦𝐴
3 fvelrnbf.1 . . 3 𝑥𝐴
4 fvelrnbf.3 . . . . 5 𝑥𝐹
5 nfcv 2906 . . . . 5 𝑥𝑦
64, 5nffv 6766 . . . 4 𝑥(𝐹𝑦)
7 fvelrnbf.2 . . . 4 𝑥𝐵
86, 7nfeq 2919 . . 3 𝑥(𝐹𝑦) = 𝐵
9 nfv 1918 . . 3 𝑦(𝐹𝑥) = 𝐵
10 fveqeq2 6765 . . 3 (𝑦 = 𝑥 → ((𝐹𝑦) = 𝐵 ↔ (𝐹𝑥) = 𝐵))
112, 3, 8, 9, 10cbvrexfw 3360 . 2 (∃𝑦𝐴 (𝐹𝑦) = 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵)
121, 11bitrdi 286 1 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wnfc 2886  wrex 3064  ran crn 5581   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  refsumcn  42462  stoweidlem29  43460
  Copyright terms: Public domain W3C validator