Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelrnbf Structured version   Visualization version   GIF version

Theorem fvelrnbf 44554
Description: A version of fvelrnb 6962 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fvelrnbf.1 𝑥𝐴
fvelrnbf.2 𝑥𝐵
fvelrnbf.3 𝑥𝐹
Assertion
Ref Expression
fvelrnbf (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))

Proof of Theorem fvelrnbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 6962 . 2 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝐵))
2 nfcv 2891 . . 3 𝑦𝐴
3 fvelrnbf.1 . . 3 𝑥𝐴
4 fvelrnbf.3 . . . . 5 𝑥𝐹
5 nfcv 2891 . . . . 5 𝑥𝑦
64, 5nffv 6910 . . . 4 𝑥(𝐹𝑦)
7 fvelrnbf.2 . . . 4 𝑥𝐵
86, 7nfeq 2905 . . 3 𝑥(𝐹𝑦) = 𝐵
9 nfv 1909 . . 3 𝑦(𝐹𝑥) = 𝐵
10 fveqeq2 6909 . . 3 (𝑦 = 𝑥 → ((𝐹𝑦) = 𝐵 ↔ (𝐹𝑥) = 𝐵))
112, 3, 8, 9, 10cbvrexfw 3292 . 2 (∃𝑦𝐴 (𝐹𝑦) = 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵)
121, 11bitrdi 286 1 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wnfc 2875  wrex 3059  ran crn 5682   Fn wfn 6548  cfv 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pr 5432
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-ss 3963  df-nul 4325  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561
This theorem is referenced by:  refsumcn  44566  stoweidlem29  45587
  Copyright terms: Public domain W3C validator