![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelrnbf | Structured version Visualization version GIF version |
Description: A version of fvelrnb 6982 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fvelrnbf.1 | ⊢ Ⅎ𝑥𝐴 |
fvelrnbf.2 | ⊢ Ⅎ𝑥𝐵 |
fvelrnbf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
fvelrnbf | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 6982 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵)) | |
2 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | fvelrnbf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | fvelrnbf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6930 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | fvelrnbf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfeq 2922 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = 𝐵 |
9 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = 𝐵 | |
10 | fveqeq2 6929 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = 𝐵 ↔ (𝐹‘𝑥) = 𝐵)) | |
11 | 2, 3, 8, 9, 10 | cbvrexfw 3311 | . 2 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
12 | 1, 11 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ∃wrex 3076 ran crn 5701 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: refsumcn 44930 stoweidlem29 45950 |
Copyright terms: Public domain | W3C validator |