Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelrnbf | Structured version Visualization version GIF version |
Description: A version of fvelrnb 6830 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fvelrnbf.1 | ⊢ Ⅎ𝑥𝐴 |
fvelrnbf.2 | ⊢ Ⅎ𝑥𝐵 |
fvelrnbf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
fvelrnbf | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 6830 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵)) | |
2 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | fvelrnbf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | fvelrnbf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | fvelrnbf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfeq 2920 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = 𝐵 |
9 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = 𝐵 | |
10 | fveqeq2 6783 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = 𝐵 ↔ (𝐹‘𝑥) = 𝐵)) | |
11 | 2, 3, 8, 9, 10 | cbvrexfw 3370 | . 2 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
12 | 1, 11 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Ⅎwnfc 2887 ∃wrex 3065 ran crn 5590 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: refsumcn 42573 stoweidlem29 43570 |
Copyright terms: Public domain | W3C validator |