![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelrnbf | Structured version Visualization version GIF version |
Description: A version of fvelrnb 6942 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fvelrnbf.1 | ⊢ Ⅎ𝑥𝐴 |
fvelrnbf.2 | ⊢ Ⅎ𝑥𝐵 |
fvelrnbf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
fvelrnbf | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvelrnb 6942 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵)) | |
2 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | fvelrnbf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | fvelrnbf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6891 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | fvelrnbf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfeq 2908 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = 𝐵 |
9 | nfv 1909 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = 𝐵 | |
10 | fveqeq2 6890 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = 𝐵 ↔ (𝐹‘𝑥) = 𝐵)) | |
11 | 2, 3, 8, 9, 10 | cbvrexfw 3294 | . 2 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
12 | 1, 11 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 ∃wrex 3062 ran crn 5667 Fn wfn 6528 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-fv 6541 |
This theorem is referenced by: refsumcn 44169 stoweidlem29 45196 |
Copyright terms: Public domain | W3C validator |