| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelrnbf | Structured version Visualization version GIF version | ||
| Description: A version of fvelrnb 6939 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| fvelrnbf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvelrnbf.2 | ⊢ Ⅎ𝑥𝐵 |
| fvelrnbf.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| fvelrnbf | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrnb 6939 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵)) | |
| 2 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | fvelrnbf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 4 | fvelrnbf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6886 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | fvelrnbf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfeq 2912 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = 𝐵 |
| 9 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = 𝐵 | |
| 10 | fveqeq2 6885 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = 𝐵 ↔ (𝐹‘𝑥) = 𝐵)) | |
| 11 | 2, 3, 8, 9, 10 | cbvrexfw 3285 | . 2 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
| 12 | 1, 11 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ∃wrex 3060 ran crn 5655 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: refsumcn 45054 stoweidlem29 46058 |
| Copyright terms: Public domain | W3C validator |