| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvelrnbf | Structured version Visualization version GIF version | ||
| Description: A version of fvelrnb 6924 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| fvelrnbf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvelrnbf.2 | ⊢ Ⅎ𝑥𝐵 |
| fvelrnbf.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| fvelrnbf | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrnb 6924 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵)) | |
| 2 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | fvelrnbf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 4 | fvelrnbf.3 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6871 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | fvelrnbf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfeq 2906 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = 𝐵 |
| 9 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = 𝐵 | |
| 10 | fveqeq2 6870 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) = 𝐵 ↔ (𝐹‘𝑥) = 𝐵)) | |
| 11 | 2, 3, 8, 9, 10 | cbvrexfw 3281 | . 2 ⊢ (∃𝑦 ∈ 𝐴 (𝐹‘𝑦) = 𝐵 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) |
| 12 | 1, 11 | bitrdi 287 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 ∃wrex 3054 ran crn 5642 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: refsumcn 45031 stoweidlem29 46034 |
| Copyright terms: Public domain | W3C validator |