Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvelrnbf Structured version   Visualization version   GIF version

Theorem fvelrnbf 45142
Description: A version of fvelrnb 6890 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fvelrnbf.1 𝑥𝐴
fvelrnbf.2 𝑥𝐵
fvelrnbf.3 𝑥𝐹
Assertion
Ref Expression
fvelrnbf (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))

Proof of Theorem fvelrnbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 6890 . 2 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑦𝐴 (𝐹𝑦) = 𝐵))
2 nfcv 2895 . . 3 𝑦𝐴
3 fvelrnbf.1 . . 3 𝑥𝐴
4 fvelrnbf.3 . . . . 5 𝑥𝐹
5 nfcv 2895 . . . . 5 𝑥𝑦
64, 5nffv 6840 . . . 4 𝑥(𝐹𝑦)
7 fvelrnbf.2 . . . 4 𝑥𝐵
86, 7nfeq 2909 . . 3 𝑥(𝐹𝑦) = 𝐵
9 nfv 1915 . . 3 𝑦(𝐹𝑥) = 𝐵
10 fveqeq2 6839 . . 3 (𝑦 = 𝑥 → ((𝐹𝑦) = 𝐵 ↔ (𝐹𝑥) = 𝐵))
112, 3, 8, 9, 10cbvrexfw 3274 . 2 (∃𝑦𝐴 (𝐹𝑦) = 𝐵 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵)
121, 11bitrdi 287 1 (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wnfc 2880  wrex 3057  ran crn 5622   Fn wfn 6483  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fn 6491  df-fv 6496
This theorem is referenced by:  refsumcn  45154  stoweidlem29  46154
  Copyright terms: Public domain W3C validator