Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem55 Structured version   Visualization version   GIF version

Theorem stoweidlem55 41796
Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t_0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem55.1 𝑡𝑈
stoweidlem55.2 𝑡𝜑
stoweidlem55.3 𝐾 = (topGen‘ran (,))
stoweidlem55.4 (𝜑𝐽 ∈ Comp)
stoweidlem55.5 𝑇 = 𝐽
stoweidlem55.6 𝐶 = (𝐽 Cn 𝐾)
stoweidlem55.7 (𝜑𝐴𝐶)
stoweidlem55.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem55.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem55.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem55.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem55.12 (𝜑𝑈𝐽)
stoweidlem55.13 (𝜑𝑍𝑈)
stoweidlem55.14 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem55.15 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
Assertion
Ref Expression
stoweidlem55 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑞,𝑡,𝑇   𝑓,𝑟,𝐴,𝑔,𝑞,𝑡   𝑥,𝑓,,𝑞,𝑡,𝑇   𝑄,𝑓,𝑔,𝑞   𝑈,𝑓,𝑔,,𝑞   𝑓,𝑍,𝑔,,𝑞,𝑡   𝜑,𝑓,𝑔,,𝑞   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   𝐴,,𝑥   ,𝐽,𝑡,𝑤   𝑞,𝑝,𝑡,𝑇   𝐴,𝑝   𝑈,𝑝   𝑍,𝑝   𝑥,𝑟,𝑇   𝑈,𝑟,𝑥   𝜑,𝑟,𝑥   𝑡,𝐾   𝑥,𝑤,𝑄   𝑤,𝑈   𝜑,𝑤   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑡,𝑝)   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑄(𝑡,,𝑟,𝑝)   𝑈(𝑡)   𝐽(𝑥,𝑓,𝑔,𝑟,𝑞,𝑝)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞,𝑝)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem55
StepHypRef Expression
1 0re 10439 . . . . 5 0 ∈ ℝ
2 stoweidlem55.10 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32stoweidlem4 41745 . . . . 5 ((𝜑 ∧ 0 ∈ ℝ) → (𝑡𝑇 ↦ 0) ∈ 𝐴)
41, 3mpan2 678 . . . 4 (𝜑 → (𝑡𝑇 ↦ 0) ∈ 𝐴)
54adantr 473 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (𝑡𝑇 ↦ 0) ∈ 𝐴)
6 stoweidlem55.2 . . . . 5 𝑡𝜑
7 nfcv 2926 . . . . . . 7 𝑡𝑇
8 stoweidlem55.1 . . . . . . 7 𝑡𝑈
97, 8nfdif 3986 . . . . . 6 𝑡(𝑇𝑈)
10 nfcv 2926 . . . . . 6 𝑡
119, 10nfeq 2937 . . . . 5 𝑡(𝑇𝑈) = ∅
126, 11nfan 1862 . . . 4 𝑡(𝜑 ∧ (𝑇𝑈) = ∅)
13 0le0 11546 . . . . . . . 8 0 ≤ 0
14 0cn 10429 . . . . . . . . 9 0 ∈ ℂ
15 eqid 2772 . . . . . . . . . 10 (𝑡𝑇 ↦ 0) = (𝑡𝑇 ↦ 0)
1615fvmpt2 6603 . . . . . . . . 9 ((𝑡𝑇 ∧ 0 ∈ ℂ) → ((𝑡𝑇 ↦ 0)‘𝑡) = 0)
1714, 16mpan2 678 . . . . . . . 8 (𝑡𝑇 → ((𝑡𝑇 ↦ 0)‘𝑡) = 0)
1813, 17syl5breqr 4963 . . . . . . 7 (𝑡𝑇 → 0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡))
1918adantl 474 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) = ∅) ∧ 𝑡𝑇) → 0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡))
20 0le1 10962 . . . . . . . 8 0 ≤ 1
2117, 20syl6eqbr 4964 . . . . . . 7 (𝑡𝑇 → ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)
2221adantl 474 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) = ∅) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)
2319, 22jca 504 . . . . 5 (((𝜑 ∧ (𝑇𝑈) = ∅) ∧ 𝑡𝑇) → (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1))
2423ex 405 . . . 4 ((𝜑 ∧ (𝑇𝑈) = ∅) → (𝑡𝑇 → (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)))
2512, 24ralrimi 3160 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1))
26 stoweidlem55.13 . . . . . 6 (𝜑𝑍𝑈)
27 stoweidlem55.12 . . . . . 6 (𝜑𝑈𝐽)
2826, 27jca 504 . . . . 5 (𝜑 → (𝑍𝑈𝑈𝐽))
29 elunii 4713 . . . . . 6 ((𝑍𝑈𝑈𝐽) → 𝑍 𝐽)
30 stoweidlem55.5 . . . . . 6 𝑇 = 𝐽
3129, 30syl6eleqr 2871 . . . . 5 ((𝑍𝑈𝑈𝐽) → 𝑍𝑇)
32 eqidd 2773 . . . . . 6 (𝑡 = 𝑍 → 0 = 0)
33 c0ex 10431 . . . . . 6 0 ∈ V
3432, 15, 33fvmpt 6593 . . . . 5 (𝑍𝑇 → ((𝑡𝑇 ↦ 0)‘𝑍) = 0)
3528, 31, 343syl 18 . . . 4 (𝜑 → ((𝑡𝑇 ↦ 0)‘𝑍) = 0)
3635adantr 473 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ((𝑡𝑇 ↦ 0)‘𝑍) = 0)
3711rzalf 40722 . . . 4 ((𝑇𝑈) = ∅ → ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))
3837adantl 474 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))
39 nfcv 2926 . . . . . . 7 𝑡𝑝
40 nfmpt1 5021 . . . . . . 7 𝑡(𝑡𝑇 ↦ 0)
4139, 40nfeq 2937 . . . . . 6 𝑡 𝑝 = (𝑡𝑇 ↦ 0)
42 fveq1 6495 . . . . . . . 8 (𝑝 = (𝑡𝑇 ↦ 0) → (𝑝𝑡) = ((𝑡𝑇 ↦ 0)‘𝑡))
4342breq2d 4937 . . . . . . 7 (𝑝 = (𝑡𝑇 ↦ 0) → (0 ≤ (𝑝𝑡) ↔ 0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡)))
4442breq1d 4935 . . . . . . 7 (𝑝 = (𝑡𝑇 ↦ 0) → ((𝑝𝑡) ≤ 1 ↔ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1))
4543, 44anbi12d 621 . . . . . 6 (𝑝 = (𝑡𝑇 ↦ 0) → ((0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)))
4641, 45ralbid 3172 . . . . 5 (𝑝 = (𝑡𝑇 ↦ 0) → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)))
47 fveq1 6495 . . . . . 6 (𝑝 = (𝑡𝑇 ↦ 0) → (𝑝𝑍) = ((𝑡𝑇 ↦ 0)‘𝑍))
4847eqeq1d 2774 . . . . 5 (𝑝 = (𝑡𝑇 ↦ 0) → ((𝑝𝑍) = 0 ↔ ((𝑡𝑇 ↦ 0)‘𝑍) = 0))
4942breq2d 4937 . . . . . 6 (𝑝 = (𝑡𝑇 ↦ 0) → (0 < (𝑝𝑡) ↔ 0 < ((𝑡𝑇 ↦ 0)‘𝑡)))
5041, 49ralbid 3172 . . . . 5 (𝑝 = (𝑡𝑇 ↦ 0) → (∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡)))
5146, 48, 503anbi123d 1415 . . . 4 (𝑝 = (𝑡𝑇 ↦ 0) → ((∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ (∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1) ∧ ((𝑡𝑇 ↦ 0)‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))))
5251rspcev 3529 . . 3 (((𝑡𝑇 ↦ 0) ∈ 𝐴 ∧ (∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1) ∧ ((𝑡𝑇 ↦ 0)‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
535, 25, 36, 38, 52syl13anc 1352 . 2 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
5411nfn 1819 . . . 4 𝑡 ¬ (𝑇𝑈) = ∅
556, 54nfan 1862 . . 3 𝑡(𝜑 ∧ ¬ (𝑇𝑈) = ∅)
56 stoweidlem55.3 . . 3 𝐾 = (topGen‘ran (,))
57 stoweidlem55.14 . . 3 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
58 stoweidlem55.15 . . 3 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
59 stoweidlem55.6 . . 3 𝐶 = (𝐽 Cn 𝐾)
60 stoweidlem55.4 . . . 4 (𝜑𝐽 ∈ Comp)
6160adantr 473 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝐽 ∈ Comp)
62 stoweidlem55.7 . . . 4 (𝜑𝐴𝐶)
6362adantr 473 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝐴𝐶)
64 stoweidlem55.8 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
65643adant1r 1157 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
66 stoweidlem55.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
67663adant1r 1157 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
682adantlr 702 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
69 stoweidlem55.11 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
7069adantlr 702 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
7127adantr 473 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑈𝐽)
72 neqne 2969 . . . 4 (¬ (𝑇𝑈) = ∅ → (𝑇𝑈) ≠ ∅)
7372adantl 474 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑇𝑈) ≠ ∅)
7426adantr 473 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑍𝑈)
758, 55, 56, 57, 58, 30, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74stoweidlem53 41794 . 2 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
7653, 75pm2.61dan 800 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wnf 1746  wcel 2050  wnfc 2910  wne 2961  wral 3082  wrex 3083  {crab 3086  cdif 3820  wss 3823  c0 4172   cuni 4708   class class class wbr 4925  cmpt 5004  ran crn 5404  cfv 6185  (class class class)co 6974  cc 10331  cr 10332  0cc0 10333  1c1 10334   + caddc 10336   · cmul 10338   < clt 10472  cle 10473  (,)cioo 12552  topGenctg 16565   Cn ccn 21548  Compccmp 21710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411  ax-mulf 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-of 7225  df-om 7395  df-1st 7499  df-2nd 7500  df-supp 7632  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-ixp 8258  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-fsupp 8627  df-fi 8668  df-sup 8699  df-inf 8700  df-oi 8767  df-card 9160  df-cda 9386  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-dec 11910  df-uz 12057  df-q 12161  df-rp 12203  df-xneg 12322  df-xadd 12323  df-xmul 12324  df-ioo 12556  df-ico 12558  df-icc 12559  df-fz 12707  df-fzo 12848  df-seq 13183  df-exp 13243  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-clim 14704  df-sum 14902  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-starv 16434  df-sca 16435  df-vsca 16436  df-ip 16437  df-tset 16438  df-ple 16439  df-ds 16441  df-unif 16442  df-hom 16443  df-cco 16444  df-rest 16550  df-topn 16551  df-0g 16569  df-gsum 16570  df-topgen 16571  df-pt 16572  df-prds 16575  df-xrs 16629  df-qtop 16634  df-imas 16635  df-xps 16637  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-mulg 18024  df-cntz 18230  df-cmn 18680  df-psmet 20251  df-xmet 20252  df-met 20253  df-bl 20254  df-mopn 20255  df-cnfld 20260  df-top 21218  df-topon 21235  df-topsp 21257  df-bases 21270  df-cld 21343  df-cn 21551  df-cnp 21552  df-cmp 21711  df-tx 21886  df-hmeo 22079  df-xms 22645  df-ms 22646  df-tms 22647
This theorem is referenced by:  stoweidlem56  41797
  Copyright terms: Public domain W3C validator