Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem55 Structured version   Visualization version   GIF version

Theorem stoweidlem55 42694
 Description: This lemma proves the existence of a function p as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: p is in the subalgebra, such that 0 <= p <= 1, p_(t0) = 0, and p > 0 on T - U. Here Z is used to represent t0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem55.1 𝑡𝑈
stoweidlem55.2 𝑡𝜑
stoweidlem55.3 𝐾 = (topGen‘ran (,))
stoweidlem55.4 (𝜑𝐽 ∈ Comp)
stoweidlem55.5 𝑇 = 𝐽
stoweidlem55.6 𝐶 = (𝐽 Cn 𝐾)
stoweidlem55.7 (𝜑𝐴𝐶)
stoweidlem55.8 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem55.9 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem55.10 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem55.11 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem55.12 (𝜑𝑈𝐽)
stoweidlem55.13 (𝜑𝑍𝑈)
stoweidlem55.14 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem55.15 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
Assertion
Ref Expression
stoweidlem55 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
Distinct variable groups:   𝑓,𝑔,,𝑞,𝑡,𝑇   𝑓,𝑟,𝐴,𝑔,𝑞,𝑡   𝑥,𝑓,,𝑞,𝑡,𝑇   𝑄,𝑓,𝑔,𝑞   𝑈,𝑓,𝑔,,𝑞   𝑓,𝑍,𝑔,,𝑞,𝑡   𝜑,𝑓,𝑔,,𝑞   𝑤,𝑔,,𝑡,𝑇   𝑔,𝑊   𝐴,,𝑥   ,𝐽,𝑡,𝑤   𝑞,𝑝,𝑡,𝑇   𝐴,𝑝   𝑈,𝑝   𝑍,𝑝   𝑥,𝑟,𝑇   𝑈,𝑟,𝑥   𝜑,𝑟,𝑥   𝑡,𝐾   𝑥,𝑤,𝑄   𝑤,𝑈   𝜑,𝑤   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑡,𝑝)   𝐴(𝑤)   𝐶(𝑥,𝑤,𝑡,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑄(𝑡,,𝑟,𝑝)   𝑈(𝑡)   𝐽(𝑥,𝑓,𝑔,𝑟,𝑞,𝑝)   𝐾(𝑥,𝑤,𝑓,𝑔,,𝑟,𝑞,𝑝)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞,𝑝)   𝑍(𝑤,𝑟)

Proof of Theorem stoweidlem55
StepHypRef Expression
1 0re 10636 . . . . 5 0 ∈ ℝ
2 stoweidlem55.10 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
32stoweidlem4 42643 . . . . 5 ((𝜑 ∧ 0 ∈ ℝ) → (𝑡𝑇 ↦ 0) ∈ 𝐴)
41, 3mpan2 690 . . . 4 (𝜑 → (𝑡𝑇 ↦ 0) ∈ 𝐴)
54adantr 484 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (𝑡𝑇 ↦ 0) ∈ 𝐴)
6 stoweidlem55.2 . . . . 5 𝑡𝜑
7 nfcv 2958 . . . . . . 7 𝑡𝑇
8 stoweidlem55.1 . . . . . . 7 𝑡𝑈
97, 8nfdif 4056 . . . . . 6 𝑡(𝑇𝑈)
10 nfcv 2958 . . . . . 6 𝑡
119, 10nfeq 2971 . . . . 5 𝑡(𝑇𝑈) = ∅
126, 11nfan 1900 . . . 4 𝑡(𝜑 ∧ (𝑇𝑈) = ∅)
13 0le0 11730 . . . . . . . 8 0 ≤ 0
14 0cn 10626 . . . . . . . . 9 0 ∈ ℂ
15 eqid 2801 . . . . . . . . . 10 (𝑡𝑇 ↦ 0) = (𝑡𝑇 ↦ 0)
1615fvmpt2 6760 . . . . . . . . 9 ((𝑡𝑇 ∧ 0 ∈ ℂ) → ((𝑡𝑇 ↦ 0)‘𝑡) = 0)
1714, 16mpan2 690 . . . . . . . 8 (𝑡𝑇 → ((𝑡𝑇 ↦ 0)‘𝑡) = 0)
1813, 17breqtrrid 5071 . . . . . . 7 (𝑡𝑇 → 0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡))
1918adantl 485 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) = ∅) ∧ 𝑡𝑇) → 0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡))
20 0le1 11156 . . . . . . . 8 0 ≤ 1
2117, 20eqbrtrdi 5072 . . . . . . 7 (𝑡𝑇 → ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)
2221adantl 485 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) = ∅) ∧ 𝑡𝑇) → ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)
2319, 22jca 515 . . . . 5 (((𝜑 ∧ (𝑇𝑈) = ∅) ∧ 𝑡𝑇) → (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1))
2423ex 416 . . . 4 ((𝜑 ∧ (𝑇𝑈) = ∅) → (𝑡𝑇 → (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)))
2512, 24ralrimi 3183 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1))
26 stoweidlem55.13 . . . . . 6 (𝜑𝑍𝑈)
27 stoweidlem55.12 . . . . . 6 (𝜑𝑈𝐽)
2826, 27jca 515 . . . . 5 (𝜑 → (𝑍𝑈𝑈𝐽))
29 elunii 4808 . . . . . 6 ((𝑍𝑈𝑈𝐽) → 𝑍 𝐽)
30 stoweidlem55.5 . . . . . 6 𝑇 = 𝐽
3129, 30eleqtrrdi 2904 . . . . 5 ((𝑍𝑈𝑈𝐽) → 𝑍𝑇)
32 eqidd 2802 . . . . . 6 (𝑡 = 𝑍 → 0 = 0)
33 c0ex 10628 . . . . . 6 0 ∈ V
3432, 15, 33fvmpt 6749 . . . . 5 (𝑍𝑇 → ((𝑡𝑇 ↦ 0)‘𝑍) = 0)
3528, 31, 343syl 18 . . . 4 (𝜑 → ((𝑡𝑇 ↦ 0)‘𝑍) = 0)
3635adantr 484 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ((𝑡𝑇 ↦ 0)‘𝑍) = 0)
3711rzalf 41643 . . . 4 ((𝑇𝑈) = ∅ → ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))
3837adantl 485 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))
39 nfcv 2958 . . . . . . 7 𝑡𝑝
40 nfmpt1 5131 . . . . . . 7 𝑡(𝑡𝑇 ↦ 0)
4139, 40nfeq 2971 . . . . . 6 𝑡 𝑝 = (𝑡𝑇 ↦ 0)
42 fveq1 6648 . . . . . . . 8 (𝑝 = (𝑡𝑇 ↦ 0) → (𝑝𝑡) = ((𝑡𝑇 ↦ 0)‘𝑡))
4342breq2d 5045 . . . . . . 7 (𝑝 = (𝑡𝑇 ↦ 0) → (0 ≤ (𝑝𝑡) ↔ 0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡)))
4442breq1d 5043 . . . . . . 7 (𝑝 = (𝑡𝑇 ↦ 0) → ((𝑝𝑡) ≤ 1 ↔ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1))
4543, 44anbi12d 633 . . . . . 6 (𝑝 = (𝑡𝑇 ↦ 0) → ((0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)))
4641, 45ralbid 3198 . . . . 5 (𝑝 = (𝑡𝑇 ↦ 0) → (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1)))
47 fveq1 6648 . . . . . 6 (𝑝 = (𝑡𝑇 ↦ 0) → (𝑝𝑍) = ((𝑡𝑇 ↦ 0)‘𝑍))
4847eqeq1d 2803 . . . . 5 (𝑝 = (𝑡𝑇 ↦ 0) → ((𝑝𝑍) = 0 ↔ ((𝑡𝑇 ↦ 0)‘𝑍) = 0))
4942breq2d 5045 . . . . . 6 (𝑝 = (𝑡𝑇 ↦ 0) → (0 < (𝑝𝑡) ↔ 0 < ((𝑡𝑇 ↦ 0)‘𝑡)))
5041, 49ralbid 3198 . . . . 5 (𝑝 = (𝑡𝑇 ↦ 0) → (∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡)))
5146, 48, 503anbi123d 1433 . . . 4 (𝑝 = (𝑡𝑇 ↦ 0) → ((∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)) ↔ (∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1) ∧ ((𝑡𝑇 ↦ 0)‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))))
5251rspcev 3574 . . 3 (((𝑡𝑇 ↦ 0) ∈ 𝐴 ∧ (∀𝑡𝑇 (0 ≤ ((𝑡𝑇 ↦ 0)‘𝑡) ∧ ((𝑡𝑇 ↦ 0)‘𝑡) ≤ 1) ∧ ((𝑡𝑇 ↦ 0)‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < ((𝑡𝑇 ↦ 0)‘𝑡))) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
535, 25, 36, 38, 52syl13anc 1369 . 2 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
5411nfn 1858 . . . 4 𝑡 ¬ (𝑇𝑈) = ∅
556, 54nfan 1900 . . 3 𝑡(𝜑 ∧ ¬ (𝑇𝑈) = ∅)
56 stoweidlem55.3 . . 3 𝐾 = (topGen‘ran (,))
57 stoweidlem55.14 . . 3 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
58 stoweidlem55.15 . . 3 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
59 stoweidlem55.6 . . 3 𝐶 = (𝐽 Cn 𝐾)
60 stoweidlem55.4 . . . 4 (𝜑𝐽 ∈ Comp)
6160adantr 484 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝐽 ∈ Comp)
62 stoweidlem55.7 . . . 4 (𝜑𝐴𝐶)
6362adantr 484 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝐴𝐶)
64 stoweidlem55.8 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
65643adant1r 1174 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
66 stoweidlem55.9 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
67663adant1r 1174 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
682adantlr 714 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
69 stoweidlem55.11 . . . 4 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
7069adantlr 714 . . 3 (((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
7127adantr 484 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑈𝐽)
72 neqne 2998 . . . 4 (¬ (𝑇𝑈) = ∅ → (𝑇𝑈) ≠ ∅)
7372adantl 485 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑇𝑈) ≠ ∅)
7426adantr 484 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑍𝑈)
758, 55, 56, 57, 58, 30, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74stoweidlem53 42692 . 2 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
7653, 75pm2.61dan 812 1 (𝜑 → ∃𝑝𝐴 (∀𝑡𝑇 (0 ≤ (𝑝𝑡) ∧ (𝑝𝑡) ≤ 1) ∧ (𝑝𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇𝑈)0 < (𝑝𝑡)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2112  Ⅎwnfc 2939   ≠ wne 2990  ∀wral 3109  ∃wrex 3110  {crab 3113   ∖ cdif 3881   ⊆ wss 3884  ∅c0 4246  ∪ cuni 4803   class class class wbr 5033   ↦ cmpt 5113  ran crn 5524  ‘cfv 6328  (class class class)co 7139  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668   ≤ cle 10669  (,)cioo 12730  topGenctg 16707   Cn ccn 21833  Compccmp 21995 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-cn 21836  df-cnp 21837  df-cmp 21996  df-tx 22171  df-hmeo 22364  df-xms 22931  df-ms 22932  df-tms 22933 This theorem is referenced by:  stoweidlem56  42695
 Copyright terms: Public domain W3C validator