Proof of Theorem stoweidlem55
Step | Hyp | Ref
| Expression |
1 | | 0re 10908 |
. . . . 5
⊢ 0 ∈
ℝ |
2 | | stoweidlem55.10 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
3 | 2 | stoweidlem4 43435 |
. . . . 5
⊢ ((𝜑 ∧ 0 ∈ ℝ) →
(𝑡 ∈ 𝑇 ↦ 0) ∈ 𝐴) |
4 | 1, 3 | mpan2 687 |
. . . 4
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 0) ∈ 𝐴) |
5 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → (𝑡 ∈ 𝑇 ↦ 0) ∈ 𝐴) |
6 | | stoweidlem55.2 |
. . . . 5
⊢
Ⅎ𝑡𝜑 |
7 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡𝑇 |
8 | | stoweidlem55.1 |
. . . . . . 7
⊢
Ⅎ𝑡𝑈 |
9 | 7, 8 | nfdif 4056 |
. . . . . 6
⊢
Ⅎ𝑡(𝑇 ∖ 𝑈) |
10 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑡∅ |
11 | 9, 10 | nfeq 2919 |
. . . . 5
⊢
Ⅎ𝑡(𝑇 ∖ 𝑈) = ∅ |
12 | 6, 11 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑡(𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) |
13 | | 0le0 12004 |
. . . . . . . 8
⊢ 0 ≤
0 |
14 | | 0cn 10898 |
. . . . . . . . 9
⊢ 0 ∈
ℂ |
15 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑡 ∈ 𝑇 ↦ 0) = (𝑡 ∈ 𝑇 ↦ 0) |
16 | 15 | fvmpt2 6868 |
. . . . . . . . 9
⊢ ((𝑡 ∈ 𝑇 ∧ 0 ∈ ℂ) → ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) = 0) |
17 | 14, 16 | mpan2 687 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝑇 → ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) = 0) |
18 | 13, 17 | breqtrrid 5108 |
. . . . . . 7
⊢ (𝑡 ∈ 𝑇 → 0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡)) |
19 | 18 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑡 ∈ 𝑇) → 0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡)) |
20 | | 0le1 11428 |
. . . . . . . 8
⊢ 0 ≤
1 |
21 | 17, 20 | eqbrtrdi 5109 |
. . . . . . 7
⊢ (𝑡 ∈ 𝑇 → ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1) |
22 | 21 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑡 ∈ 𝑇) → ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1) |
23 | 19, 22 | jca 511 |
. . . . 5
⊢ (((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑡 ∈ 𝑇) → (0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1)) |
24 | 23 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → (𝑡 ∈ 𝑇 → (0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1))) |
25 | 12, 24 | ralrimi 3139 |
. . 3
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1)) |
26 | | stoweidlem55.13 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
27 | | stoweidlem55.12 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
28 | 26, 27 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽)) |
29 | | elunii 4841 |
. . . . . 6
⊢ ((𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽) → 𝑍 ∈ ∪ 𝐽) |
30 | | stoweidlem55.5 |
. . . . . 6
⊢ 𝑇 = ∪
𝐽 |
31 | 29, 30 | eleqtrrdi 2850 |
. . . . 5
⊢ ((𝑍 ∈ 𝑈 ∧ 𝑈 ∈ 𝐽) → 𝑍 ∈ 𝑇) |
32 | | eqidd 2739 |
. . . . . 6
⊢ (𝑡 = 𝑍 → 0 = 0) |
33 | | c0ex 10900 |
. . . . . 6
⊢ 0 ∈
V |
34 | 32, 15, 33 | fvmpt 6857 |
. . . . 5
⊢ (𝑍 ∈ 𝑇 → ((𝑡 ∈ 𝑇 ↦ 0)‘𝑍) = 0) |
35 | 28, 31, 34 | 3syl 18 |
. . . 4
⊢ (𝜑 → ((𝑡 ∈ 𝑇 ↦ 0)‘𝑍) = 0) |
36 | 35 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → ((𝑡 ∈ 𝑇 ↦ 0)‘𝑍) = 0) |
37 | 11 | rzalf 42449 |
. . . 4
⊢ ((𝑇 ∖ 𝑈) = ∅ → ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡)) |
38 | 37 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡)) |
39 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑡𝑝 |
40 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ 0) |
41 | 39, 40 | nfeq 2919 |
. . . . . 6
⊢
Ⅎ𝑡 𝑝 = (𝑡 ∈ 𝑇 ↦ 0) |
42 | | fveq1 6755 |
. . . . . . . 8
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → (𝑝‘𝑡) = ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡)) |
43 | 42 | breq2d 5082 |
. . . . . . 7
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → (0 ≤ (𝑝‘𝑡) ↔ 0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡))) |
44 | 42 | breq1d 5080 |
. . . . . . 7
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → ((𝑝‘𝑡) ≤ 1 ↔ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1)) |
45 | 43, 44 | anbi12d 630 |
. . . . . 6
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → ((0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ↔ (0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1))) |
46 | 41, 45 | ralbid 3158 |
. . . . 5
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1))) |
47 | | fveq1 6755 |
. . . . . 6
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → (𝑝‘𝑍) = ((𝑡 ∈ 𝑇 ↦ 0)‘𝑍)) |
48 | 47 | eqeq1d 2740 |
. . . . 5
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → ((𝑝‘𝑍) = 0 ↔ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑍) = 0)) |
49 | 42 | breq2d 5082 |
. . . . . 6
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → (0 < (𝑝‘𝑡) ↔ 0 < ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡))) |
50 | 41, 49 | ralbid 3158 |
. . . . 5
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡))) |
51 | 46, 48, 50 | 3anbi123d 1434 |
. . . 4
⊢ (𝑝 = (𝑡 ∈ 𝑇 ↦ 0) → ((∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡)))) |
52 | 51 | rspcev 3552 |
. . 3
⊢ (((𝑡 ∈ 𝑇 ↦ 0) ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡) ≤ 1) ∧ ((𝑡 ∈ 𝑇 ↦ 0)‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < ((𝑡 ∈ 𝑇 ↦ 0)‘𝑡))) → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) |
53 | 5, 25, 36, 38, 52 | syl13anc 1370 |
. 2
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) |
54 | 11 | nfn 1861 |
. . . 4
⊢
Ⅎ𝑡 ¬
(𝑇 ∖ 𝑈) = ∅ |
55 | 6, 54 | nfan 1903 |
. . 3
⊢
Ⅎ𝑡(𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) |
56 | | stoweidlem55.3 |
. . 3
⊢ 𝐾 = (topGen‘ran
(,)) |
57 | | stoweidlem55.14 |
. . 3
⊢ 𝑄 = {ℎ ∈ 𝐴 ∣ ((ℎ‘𝑍) = 0 ∧ ∀𝑡 ∈ 𝑇 (0 ≤ (ℎ‘𝑡) ∧ (ℎ‘𝑡) ≤ 1))} |
58 | | stoweidlem55.15 |
. . 3
⊢ 𝑊 = {𝑤 ∈ 𝐽 ∣ ∃ℎ ∈ 𝑄 𝑤 = {𝑡 ∈ 𝑇 ∣ 0 < (ℎ‘𝑡)}} |
59 | | stoweidlem55.6 |
. . 3
⊢ 𝐶 = (𝐽 Cn 𝐾) |
60 | | stoweidlem55.4 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ Comp) |
61 | 60 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → 𝐽 ∈ Comp) |
62 | | stoweidlem55.7 |
. . . 4
⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
63 | 62 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → 𝐴 ⊆ 𝐶) |
64 | | stoweidlem55.8 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
65 | 64 | 3adant1r 1175 |
. . 3
⊢ (((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) + (𝑔‘𝑡))) ∈ 𝐴) |
66 | | stoweidlem55.9 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
67 | 66 | 3adant1r 1175 |
. . 3
⊢ (((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝐴) |
68 | 2 | adantlr 711 |
. . 3
⊢ (((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑥 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑥) ∈ 𝐴) |
69 | | stoweidlem55.11 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
70 | 69 | adantlr 711 |
. . 3
⊢ (((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ (𝑟 ∈ 𝑇 ∧ 𝑡 ∈ 𝑇 ∧ 𝑟 ≠ 𝑡)) → ∃𝑞 ∈ 𝐴 (𝑞‘𝑟) ≠ (𝑞‘𝑡)) |
71 | 27 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → 𝑈 ∈ 𝐽) |
72 | | neqne 2950 |
. . . 4
⊢ (¬
(𝑇 ∖ 𝑈) = ∅ → (𝑇 ∖ 𝑈) ≠ ∅) |
73 | 72 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → (𝑇 ∖ 𝑈) ≠ ∅) |
74 | 26 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → 𝑍 ∈ 𝑈) |
75 | 8, 55, 56, 57, 58, 30, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74 | stoweidlem53 43484 |
. 2
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) |
76 | 53, 75 | pm2.61dan 809 |
1
⊢ (𝜑 → ∃𝑝 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑝‘𝑡) ∧ (𝑝‘𝑡) ≤ 1) ∧ (𝑝‘𝑍) = 0 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑝‘𝑡))) |