| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elunif | Structured version Visualization version GIF version | ||
| Description: A version of eluni 4863 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| elunif.1 | ⊢ Ⅎ𝑥𝐴 |
| elunif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| elunif | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4863 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | elunif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2896 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 4 | 2, 3 | nfel 2911 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 |
| 5 | elunif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 3, 5 | nfel 2911 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 7 | 4, 6 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) |
| 8 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) | |
| 9 | eleq2w 2817 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
| 10 | eleq1w 2816 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 12 | 7, 8, 11 | cbvexv1 2344 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 13 | 1, 12 | bitri 275 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 Ⅎwnfc 2881 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-v 3440 df-uni 4861 |
| This theorem is referenced by: eluni2f 45214 stoweidlem46 46158 stoweidlem57 46169 |
| Copyright terms: Public domain | W3C validator |