Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunif Structured version   Visualization version   GIF version

Theorem elunif 44978
Description: A version of eluni 4890 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
elunif.1 𝑥𝐴
elunif.2 𝑥𝐵
Assertion
Ref Expression
elunif (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Distinct variable group:   𝐴,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem elunif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eluni 4890 . 2 (𝐴 𝐵 ↔ ∃𝑦(𝐴𝑦𝑦𝐵))
2 elunif.1 . . . . 5 𝑥𝐴
3 nfcv 2897 . . . . 5 𝑥𝑦
42, 3nfel 2912 . . . 4 𝑥 𝐴𝑦
5 elunif.2 . . . . 5 𝑥𝐵
63, 5nfel 2912 . . . 4 𝑥 𝑦𝐵
74, 6nfan 1898 . . 3 𝑥(𝐴𝑦𝑦𝐵)
8 nfv 1913 . . 3 𝑦(𝐴𝑥𝑥𝐵)
9 eleq2w 2817 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
10 eleq1w 2816 . . . 4 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
119, 10anbi12d 632 . . 3 (𝑦 = 𝑥 → ((𝐴𝑦𝑦𝐵) ↔ (𝐴𝑥𝑥𝐵)))
127, 8, 11cbvexv1 2342 . 2 (∃𝑦(𝐴𝑦𝑦𝐵) ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
131, 12bitri 275 1 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1778  wcel 2107  wnfc 2882   cuni 4887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-v 3465  df-uni 4888
This theorem is referenced by:  eluni2f  45065  stoweidlem46  46018  stoweidlem57  46029
  Copyright terms: Public domain W3C validator