![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elunif | Structured version Visualization version GIF version |
Description: A version of eluni 4912 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
elunif.1 | ⊢ Ⅎ𝑥𝐴 |
elunif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
elunif | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 4912 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
2 | elunif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2901 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
4 | 2, 3 | nfel 2915 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 |
5 | elunif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 3, 5 | nfel 2915 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
7 | 4, 6 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) |
8 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) | |
9 | eleq2w 2815 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
10 | eleq1w 2814 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
11 | 9, 10 | anbi12d 629 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
12 | 7, 8, 11 | cbvexv1 2336 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
13 | 1, 12 | bitri 274 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wex 1779 ∈ wcel 2104 Ⅎwnfc 2881 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-v 3474 df-uni 4910 |
This theorem is referenced by: eluni2f 44095 stoweidlem46 45062 stoweidlem57 45073 |
Copyright terms: Public domain | W3C validator |