| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elunif | Structured version Visualization version GIF version | ||
| Description: A version of eluni 4890 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| elunif.1 | ⊢ Ⅎ𝑥𝐴 |
| elunif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| elunif | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4890 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | elunif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 4 | 2, 3 | nfel 2912 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 |
| 5 | elunif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 3, 5 | nfel 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 7 | 4, 6 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) |
| 8 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) | |
| 9 | eleq2w 2817 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
| 10 | eleq1w 2816 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 12 | 7, 8, 11 | cbvexv1 2342 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 13 | 1, 12 | bitri 275 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 Ⅎwnfc 2882 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3465 df-uni 4888 |
| This theorem is referenced by: eluni2f 45065 stoweidlem46 46018 stoweidlem57 46029 |
| Copyright terms: Public domain | W3C validator |