Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem18 Structured version   Visualization version   GIF version

Theorem stoweidlem18 46047
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem18.1 𝑡𝐷
stoweidlem18.2 𝑡𝜑
stoweidlem18.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem18.4 𝑇 = 𝐽
stoweidlem18.5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem18.6 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem18.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem18.8 (𝜑𝐷 = ∅)
Assertion
Ref Expression
stoweidlem18 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑡,𝑎,𝑇   𝐴,𝑎   𝜑,𝑎   𝑥,𝑡   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐴(𝑡)   𝐵(𝑡,𝑎)   𝐷(𝑡,𝑎)   𝐸(𝑡,𝑎)   𝐹(𝑡,𝑎)   𝐽(𝑥,𝑡,𝑎)

Proof of Theorem stoweidlem18
StepHypRef Expression
1 stoweidlem18.3 . . 3 𝐹 = (𝑡𝑇 ↦ 1)
2 1re 11235 . . . 4 1 ∈ ℝ
3 stoweidlem18.5 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
43stoweidlem4 46033 . . . 4 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
52, 4mpan2 691 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
61, 5eqeltrid 2838 . 2 (𝜑𝐹𝐴)
7 stoweidlem18.2 . . 3 𝑡𝜑
8 0le1 11760 . . . . . 6 0 ≤ 1
9 simpr 484 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
101fvmpt2 6997 . . . . . . 7 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
119, 2, 10sylancl 586 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
128, 11breqtrrid 5157 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
13 1le1 11865 . . . . . 6 1 ≤ 1
1411, 13eqbrtrdi 5158 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ≤ 1)
1512, 14jca 511 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
1615ex 412 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
177, 16ralrimi 3240 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
18 stoweidlem18.8 . . 3 (𝜑𝐷 = ∅)
19 stoweidlem18.1 . . . . 5 𝑡𝐷
20 nfcv 2898 . . . . 5 𝑡
2119, 20nfeq 2912 . . . 4 𝑡 𝐷 = ∅
2221rzalf 45041 . . 3 (𝐷 = ∅ → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
2318, 22syl 17 . 2 (𝜑 → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
24 1red 11236 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
25 stoweidlem18.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2624, 25ltsubrpd 13083 . . . . . 6 (𝜑 → (1 − 𝐸) < 1)
2726adantr 480 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < 1)
28 stoweidlem18.6 . . . . . . . 8 (𝜑𝐵 ∈ (Clsd‘𝐽))
29 stoweidlem18.4 . . . . . . . . 9 𝑇 = 𝐽
3029cldss 22967 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
3128, 30syl 17 . . . . . . 7 (𝜑𝐵𝑇)
3231sselda 3958 . . . . . 6 ((𝜑𝑡𝐵) → 𝑡𝑇)
3332, 2, 10sylancl 586 . . . . 5 ((𝜑𝑡𝐵) → (𝐹𝑡) = 1)
3427, 33breqtrrd 5147 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝐹𝑡))
3534ex 412 . . 3 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝐹𝑡)))
367, 35ralrimi 3240 . 2 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))
37 nfcv 2898 . . . . . 6 𝑡𝑥
38 nfmpt1 5220 . . . . . . 7 𝑡(𝑡𝑇 ↦ 1)
391, 38nfcxfr 2896 . . . . . 6 𝑡𝐹
4037, 39nfeq 2912 . . . . 5 𝑡 𝑥 = 𝐹
41 fveq1 6875 . . . . . . 7 (𝑥 = 𝐹 → (𝑥𝑡) = (𝐹𝑡))
4241breq2d 5131 . . . . . 6 (𝑥 = 𝐹 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝐹𝑡)))
4341breq1d 5129 . . . . . 6 (𝑥 = 𝐹 → ((𝑥𝑡) ≤ 1 ↔ (𝐹𝑡) ≤ 1))
4442, 43anbi12d 632 . . . . 5 (𝑥 = 𝐹 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4540, 44ralbid 3255 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4641breq1d 5129 . . . . 5 (𝑥 = 𝐹 → ((𝑥𝑡) < 𝐸 ↔ (𝐹𝑡) < 𝐸))
4740, 46ralbid 3255 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝐹𝑡) < 𝐸))
4841breq2d 5131 . . . . 5 (𝑥 = 𝐹 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝐹𝑡)))
4940, 48ralbid 3255 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡)))
5045, 47, 493anbi123d 1438 . . 3 (𝑥 = 𝐹 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))))
5150rspcev 3601 . 2 ((𝐹𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
526, 17, 23, 36, 51syl13anc 1374 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2108  wnfc 2883  wral 3051  wrex 3060  wss 3926  c0 4308   cuni 4883   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   < clt 11269  cle 11270  cmin 11466  +crp 13008  Clsdccld 22954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-rp 13009  df-top 22832  df-cld 22957
This theorem is referenced by:  stoweidlem58  46087
  Copyright terms: Public domain W3C validator