Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem18 Structured version   Visualization version   GIF version

Theorem stoweidlem18 44345
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem18.1 𝑡𝐷
stoweidlem18.2 𝑡𝜑
stoweidlem18.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem18.4 𝑇 = 𝐽
stoweidlem18.5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem18.6 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem18.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem18.8 (𝜑𝐷 = ∅)
Assertion
Ref Expression
stoweidlem18 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑡,𝑎,𝑇   𝐴,𝑎   𝜑,𝑎   𝑥,𝑡   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐴(𝑡)   𝐵(𝑡,𝑎)   𝐷(𝑡,𝑎)   𝐸(𝑡,𝑎)   𝐹(𝑡,𝑎)   𝐽(𝑥,𝑡,𝑎)

Proof of Theorem stoweidlem18
StepHypRef Expression
1 stoweidlem18.3 . . 3 𝐹 = (𝑡𝑇 ↦ 1)
2 1re 11160 . . . 4 1 ∈ ℝ
3 stoweidlem18.5 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
43stoweidlem4 44331 . . . 4 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
52, 4mpan2 690 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
61, 5eqeltrid 2838 . 2 (𝜑𝐹𝐴)
7 stoweidlem18.2 . . 3 𝑡𝜑
8 0le1 11683 . . . . . 6 0 ≤ 1
9 simpr 486 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
101fvmpt2 6960 . . . . . . 7 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
119, 2, 10sylancl 587 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
128, 11breqtrrid 5144 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
13 1le1 11788 . . . . . 6 1 ≤ 1
1411, 13eqbrtrdi 5145 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ≤ 1)
1512, 14jca 513 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
1615ex 414 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
177, 16ralrimi 3239 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
18 stoweidlem18.8 . . 3 (𝜑𝐷 = ∅)
19 stoweidlem18.1 . . . . 5 𝑡𝐷
20 nfcv 2904 . . . . 5 𝑡
2119, 20nfeq 2917 . . . 4 𝑡 𝐷 = ∅
2221rzalf 43310 . . 3 (𝐷 = ∅ → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
2318, 22syl 17 . 2 (𝜑 → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
24 1red 11161 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
25 stoweidlem18.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2624, 25ltsubrpd 12994 . . . . . 6 (𝜑 → (1 − 𝐸) < 1)
2726adantr 482 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < 1)
28 stoweidlem18.6 . . . . . . . 8 (𝜑𝐵 ∈ (Clsd‘𝐽))
29 stoweidlem18.4 . . . . . . . . 9 𝑇 = 𝐽
3029cldss 22396 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
3128, 30syl 17 . . . . . . 7 (𝜑𝐵𝑇)
3231sselda 3945 . . . . . 6 ((𝜑𝑡𝐵) → 𝑡𝑇)
3332, 2, 10sylancl 587 . . . . 5 ((𝜑𝑡𝐵) → (𝐹𝑡) = 1)
3427, 33breqtrrd 5134 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝐹𝑡))
3534ex 414 . . 3 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝐹𝑡)))
367, 35ralrimi 3239 . 2 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))
37 nfcv 2904 . . . . . 6 𝑡𝑥
38 nfmpt1 5214 . . . . . . 7 𝑡(𝑡𝑇 ↦ 1)
391, 38nfcxfr 2902 . . . . . 6 𝑡𝐹
4037, 39nfeq 2917 . . . . 5 𝑡 𝑥 = 𝐹
41 fveq1 6842 . . . . . . 7 (𝑥 = 𝐹 → (𝑥𝑡) = (𝐹𝑡))
4241breq2d 5118 . . . . . 6 (𝑥 = 𝐹 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝐹𝑡)))
4341breq1d 5116 . . . . . 6 (𝑥 = 𝐹 → ((𝑥𝑡) ≤ 1 ↔ (𝐹𝑡) ≤ 1))
4442, 43anbi12d 632 . . . . 5 (𝑥 = 𝐹 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4540, 44ralbid 3255 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4641breq1d 5116 . . . . 5 (𝑥 = 𝐹 → ((𝑥𝑡) < 𝐸 ↔ (𝐹𝑡) < 𝐸))
4740, 46ralbid 3255 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝐹𝑡) < 𝐸))
4841breq2d 5118 . . . . 5 (𝑥 = 𝐹 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝐹𝑡)))
4940, 48ralbid 3255 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡)))
5045, 47, 493anbi123d 1437 . . 3 (𝑥 = 𝐹 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))))
5150rspcev 3580 . 2 ((𝐹𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
526, 17, 23, 36, 51syl13anc 1373 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884  wral 3061  wrex 3070  wss 3911  c0 4283   cuni 4866   class class class wbr 5106  cmpt 5189  cfv 6497  (class class class)co 7358  cr 11055  0cc0 11056  1c1 11057   < clt 11194  cle 11195  cmin 11390  +crp 12920  Clsdccld 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-rp 12921  df-top 22259  df-cld 22386
This theorem is referenced by:  stoweidlem58  44385
  Copyright terms: Public domain W3C validator