Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem18 Structured version   Visualization version   GIF version

Theorem stoweidlem18 46009
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem18.1 𝑡𝐷
stoweidlem18.2 𝑡𝜑
stoweidlem18.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem18.4 𝑇 = 𝐽
stoweidlem18.5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem18.6 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem18.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem18.8 (𝜑𝐷 = ∅)
Assertion
Ref Expression
stoweidlem18 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑡,𝑎,𝑇   𝐴,𝑎   𝜑,𝑎   𝑥,𝑡   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐴(𝑡)   𝐵(𝑡,𝑎)   𝐷(𝑡,𝑎)   𝐸(𝑡,𝑎)   𝐹(𝑡,𝑎)   𝐽(𝑥,𝑡,𝑎)

Proof of Theorem stoweidlem18
StepHypRef Expression
1 stoweidlem18.3 . . 3 𝐹 = (𝑡𝑇 ↦ 1)
2 1re 11150 . . . 4 1 ∈ ℝ
3 stoweidlem18.5 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
43stoweidlem4 45995 . . . 4 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
52, 4mpan2 691 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
61, 5eqeltrid 2832 . 2 (𝜑𝐹𝐴)
7 stoweidlem18.2 . . 3 𝑡𝜑
8 0le1 11677 . . . . . 6 0 ≤ 1
9 simpr 484 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
101fvmpt2 6961 . . . . . . 7 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
119, 2, 10sylancl 586 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
128, 11breqtrrid 5140 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
13 1le1 11782 . . . . . 6 1 ≤ 1
1411, 13eqbrtrdi 5141 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ≤ 1)
1512, 14jca 511 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
1615ex 412 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
177, 16ralrimi 3233 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
18 stoweidlem18.8 . . 3 (𝜑𝐷 = ∅)
19 stoweidlem18.1 . . . . 5 𝑡𝐷
20 nfcv 2891 . . . . 5 𝑡
2119, 20nfeq 2905 . . . 4 𝑡 𝐷 = ∅
2221rzalf 45004 . . 3 (𝐷 = ∅ → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
2318, 22syl 17 . 2 (𝜑 → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
24 1red 11151 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
25 stoweidlem18.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2624, 25ltsubrpd 13003 . . . . . 6 (𝜑 → (1 − 𝐸) < 1)
2726adantr 480 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < 1)
28 stoweidlem18.6 . . . . . . . 8 (𝜑𝐵 ∈ (Clsd‘𝐽))
29 stoweidlem18.4 . . . . . . . . 9 𝑇 = 𝐽
3029cldss 22949 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
3128, 30syl 17 . . . . . . 7 (𝜑𝐵𝑇)
3231sselda 3943 . . . . . 6 ((𝜑𝑡𝐵) → 𝑡𝑇)
3332, 2, 10sylancl 586 . . . . 5 ((𝜑𝑡𝐵) → (𝐹𝑡) = 1)
3427, 33breqtrrd 5130 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝐹𝑡))
3534ex 412 . . 3 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝐹𝑡)))
367, 35ralrimi 3233 . 2 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))
37 nfcv 2891 . . . . . 6 𝑡𝑥
38 nfmpt1 5201 . . . . . . 7 𝑡(𝑡𝑇 ↦ 1)
391, 38nfcxfr 2889 . . . . . 6 𝑡𝐹
4037, 39nfeq 2905 . . . . 5 𝑡 𝑥 = 𝐹
41 fveq1 6839 . . . . . . 7 (𝑥 = 𝐹 → (𝑥𝑡) = (𝐹𝑡))
4241breq2d 5114 . . . . . 6 (𝑥 = 𝐹 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝐹𝑡)))
4341breq1d 5112 . . . . . 6 (𝑥 = 𝐹 → ((𝑥𝑡) ≤ 1 ↔ (𝐹𝑡) ≤ 1))
4442, 43anbi12d 632 . . . . 5 (𝑥 = 𝐹 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4540, 44ralbid 3248 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4641breq1d 5112 . . . . 5 (𝑥 = 𝐹 → ((𝑥𝑡) < 𝐸 ↔ (𝐹𝑡) < 𝐸))
4740, 46ralbid 3248 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝐹𝑡) < 𝐸))
4841breq2d 5114 . . . . 5 (𝑥 = 𝐹 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝐹𝑡)))
4940, 48ralbid 3248 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡)))
5045, 47, 493anbi123d 1438 . . 3 (𝑥 = 𝐹 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))))
5150rspcev 3585 . 2 ((𝐹𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
526, 17, 23, 36, 51syl13anc 1374 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  wrex 3053  wss 3911  c0 4292   cuni 4867   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   < clt 11184  cle 11185  cmin 11381  +crp 12927  Clsdccld 22936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-rp 12928  df-top 22814  df-cld 22939
This theorem is referenced by:  stoweidlem58  46049
  Copyright terms: Public domain W3C validator