Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem18 Structured version   Visualization version   GIF version

Theorem stoweidlem18 45939
Description: This theorem proves Lemma 2 in [BrosowskiDeutsh] p. 92 when A is empty, the trivial case. Here D is used to denote the set A of Lemma 2, because the variable A is used for the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem18.1 𝑡𝐷
stoweidlem18.2 𝑡𝜑
stoweidlem18.3 𝐹 = (𝑡𝑇 ↦ 1)
stoweidlem18.4 𝑇 = 𝐽
stoweidlem18.5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
stoweidlem18.6 (𝜑𝐵 ∈ (Clsd‘𝐽))
stoweidlem18.7 (𝜑𝐸 ∈ ℝ+)
stoweidlem18.8 (𝜑𝐷 = ∅)
Assertion
Ref Expression
stoweidlem18 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Distinct variable groups:   𝑡,𝑎,𝑇   𝐴,𝑎   𝜑,𝑎   𝑥,𝑡   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝑇
Allowed substitution hints:   𝜑(𝑥,𝑡)   𝐴(𝑡)   𝐵(𝑡,𝑎)   𝐷(𝑡,𝑎)   𝐸(𝑡,𝑎)   𝐹(𝑡,𝑎)   𝐽(𝑥,𝑡,𝑎)

Proof of Theorem stoweidlem18
StepHypRef Expression
1 stoweidlem18.3 . . 3 𝐹 = (𝑡𝑇 ↦ 1)
2 1re 11290 . . . 4 1 ∈ ℝ
3 stoweidlem18.5 . . . . 5 ((𝜑𝑎 ∈ ℝ) → (𝑡𝑇𝑎) ∈ 𝐴)
43stoweidlem4 45925 . . . 4 ((𝜑 ∧ 1 ∈ ℝ) → (𝑡𝑇 ↦ 1) ∈ 𝐴)
52, 4mpan2 690 . . 3 (𝜑 → (𝑡𝑇 ↦ 1) ∈ 𝐴)
61, 5eqeltrid 2848 . 2 (𝜑𝐹𝐴)
7 stoweidlem18.2 . . 3 𝑡𝜑
8 0le1 11813 . . . . . 6 0 ≤ 1
9 simpr 484 . . . . . . 7 ((𝜑𝑡𝑇) → 𝑡𝑇)
101fvmpt2 7040 . . . . . . 7 ((𝑡𝑇 ∧ 1 ∈ ℝ) → (𝐹𝑡) = 1)
119, 2, 10sylancl 585 . . . . . 6 ((𝜑𝑡𝑇) → (𝐹𝑡) = 1)
128, 11breqtrrid 5204 . . . . 5 ((𝜑𝑡𝑇) → 0 ≤ (𝐹𝑡))
13 1le1 11918 . . . . . 6 1 ≤ 1
1411, 13eqbrtrdi 5205 . . . . 5 ((𝜑𝑡𝑇) → (𝐹𝑡) ≤ 1)
1512, 14jca 511 . . . 4 ((𝜑𝑡𝑇) → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
1615ex 412 . . 3 (𝜑 → (𝑡𝑇 → (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
177, 16ralrimi 3263 . 2 (𝜑 → ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1))
18 stoweidlem18.8 . . 3 (𝜑𝐷 = ∅)
19 stoweidlem18.1 . . . . 5 𝑡𝐷
20 nfcv 2908 . . . . 5 𝑡
2119, 20nfeq 2922 . . . 4 𝑡 𝐷 = ∅
2221rzalf 44917 . . 3 (𝐷 = ∅ → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
2318, 22syl 17 . 2 (𝜑 → ∀𝑡𝐷 (𝐹𝑡) < 𝐸)
24 1red 11291 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
25 stoweidlem18.7 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
2624, 25ltsubrpd 13131 . . . . . 6 (𝜑 → (1 − 𝐸) < 1)
2726adantr 480 . . . . 5 ((𝜑𝑡𝐵) → (1 − 𝐸) < 1)
28 stoweidlem18.6 . . . . . . . 8 (𝜑𝐵 ∈ (Clsd‘𝐽))
29 stoweidlem18.4 . . . . . . . . 9 𝑇 = 𝐽
3029cldss 23058 . . . . . . . 8 (𝐵 ∈ (Clsd‘𝐽) → 𝐵𝑇)
3128, 30syl 17 . . . . . . 7 (𝜑𝐵𝑇)
3231sselda 4008 . . . . . 6 ((𝜑𝑡𝐵) → 𝑡𝑇)
3332, 2, 10sylancl 585 . . . . 5 ((𝜑𝑡𝐵) → (𝐹𝑡) = 1)
3427, 33breqtrrd 5194 . . . 4 ((𝜑𝑡𝐵) → (1 − 𝐸) < (𝐹𝑡))
3534ex 412 . . 3 (𝜑 → (𝑡𝐵 → (1 − 𝐸) < (𝐹𝑡)))
367, 35ralrimi 3263 . 2 (𝜑 → ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))
37 nfcv 2908 . . . . . 6 𝑡𝑥
38 nfmpt1 5274 . . . . . . 7 𝑡(𝑡𝑇 ↦ 1)
391, 38nfcxfr 2906 . . . . . 6 𝑡𝐹
4037, 39nfeq 2922 . . . . 5 𝑡 𝑥 = 𝐹
41 fveq1 6919 . . . . . . 7 (𝑥 = 𝐹 → (𝑥𝑡) = (𝐹𝑡))
4241breq2d 5178 . . . . . 6 (𝑥 = 𝐹 → (0 ≤ (𝑥𝑡) ↔ 0 ≤ (𝐹𝑡)))
4341breq1d 5176 . . . . . 6 (𝑥 = 𝐹 → ((𝑥𝑡) ≤ 1 ↔ (𝐹𝑡) ≤ 1))
4442, 43anbi12d 631 . . . . 5 (𝑥 = 𝐹 → ((0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4540, 44ralbid 3279 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ↔ ∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1)))
4641breq1d 5176 . . . . 5 (𝑥 = 𝐹 → ((𝑥𝑡) < 𝐸 ↔ (𝐹𝑡) < 𝐸))
4740, 46ralbid 3279 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐷 (𝑥𝑡) < 𝐸 ↔ ∀𝑡𝐷 (𝐹𝑡) < 𝐸))
4841breq2d 5178 . . . . 5 (𝑥 = 𝐹 → ((1 − 𝐸) < (𝑥𝑡) ↔ (1 − 𝐸) < (𝐹𝑡)))
4940, 48ralbid 3279 . . . 4 (𝑥 = 𝐹 → (∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡) ↔ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡)))
5045, 47, 493anbi123d 1436 . . 3 (𝑥 = 𝐹 → ((∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)) ↔ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))))
5150rspcev 3635 . 2 ((𝐹𝐴 ∧ (∀𝑡𝑇 (0 ≤ (𝐹𝑡) ∧ (𝐹𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝐹𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝐹𝑡))) → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
526, 17, 23, 36, 51syl13anc 1372 1 (𝜑 → ∃𝑥𝐴 (∀𝑡𝑇 (0 ≤ (𝑥𝑡) ∧ (𝑥𝑡) ≤ 1) ∧ ∀𝑡𝐷 (𝑥𝑡) < 𝐸 ∧ ∀𝑡𝐵 (1 − 𝐸) < (𝑥𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  wrex 3076  wss 3976  c0 4352   cuni 4931   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325  cmin 11520  +crp 13057  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-rp 13058  df-top 22921  df-cld 23048
This theorem is referenced by:  stoweidlem58  45979
  Copyright terms: Public domain W3C validator