Proof of Theorem stoweidlem18
Step | Hyp | Ref
| Expression |
1 | | stoweidlem18.3 |
. . 3
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ 1) |
2 | | 1re 10906 |
. . . 4
⊢ 1 ∈
ℝ |
3 | | stoweidlem18.5 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑡 ∈ 𝑇 ↦ 𝑎) ∈ 𝐴) |
4 | 3 | stoweidlem4 43435 |
. . . 4
⊢ ((𝜑 ∧ 1 ∈ ℝ) →
(𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
5 | 2, 4 | mpan2 687 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝑇 ↦ 1) ∈ 𝐴) |
6 | 1, 5 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐹 ∈ 𝐴) |
7 | | stoweidlem18.2 |
. . 3
⊢
Ⅎ𝑡𝜑 |
8 | | 0le1 11428 |
. . . . . 6
⊢ 0 ≤
1 |
9 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
10 | 1 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑡 ∈ 𝑇 ∧ 1 ∈ ℝ) → (𝐹‘𝑡) = 1) |
11 | 9, 2, 10 | sylancl 585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) = 1) |
12 | 8, 11 | breqtrrid 5108 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 0 ≤ (𝐹‘𝑡)) |
13 | | 1le1 11533 |
. . . . . 6
⊢ 1 ≤
1 |
14 | 11, 13 | eqbrtrdi 5109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ≤ 1) |
15 | 12, 14 | jca 511 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (0 ≤ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ 1)) |
16 | 15 | ex 412 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝑇 → (0 ≤ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ 1))) |
17 | 7, 16 | ralrimi 3139 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (0 ≤ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ 1)) |
18 | | stoweidlem18.8 |
. . 3
⊢ (𝜑 → 𝐷 = ∅) |
19 | | stoweidlem18.1 |
. . . . 5
⊢
Ⅎ𝑡𝐷 |
20 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑡∅ |
21 | 19, 20 | nfeq 2919 |
. . . 4
⊢
Ⅎ𝑡 𝐷 = ∅ |
22 | 21 | rzalf 42449 |
. . 3
⊢ (𝐷 = ∅ → ∀𝑡 ∈ 𝐷 (𝐹‘𝑡) < 𝐸) |
23 | 18, 22 | syl 17 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ 𝐷 (𝐹‘𝑡) < 𝐸) |
24 | | 1red 10907 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℝ) |
25 | | stoweidlem18.7 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
26 | 24, 25 | ltsubrpd 12733 |
. . . . . 6
⊢ (𝜑 → (1 − 𝐸) < 1) |
27 | 26 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − 𝐸) < 1) |
28 | | stoweidlem18.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
29 | | stoweidlem18.4 |
. . . . . . . . 9
⊢ 𝑇 = ∪
𝐽 |
30 | 29 | cldss 22088 |
. . . . . . . 8
⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐵 ⊆ 𝑇) |
31 | 28, 30 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ 𝑇) |
32 | 31 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → 𝑡 ∈ 𝑇) |
33 | 32, 2, 10 | sylancl 585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (𝐹‘𝑡) = 1) |
34 | 27, 33 | breqtrrd 5098 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐵) → (1 − 𝐸) < (𝐹‘𝑡)) |
35 | 34 | ex 412 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝐵 → (1 − 𝐸) < (𝐹‘𝑡))) |
36 | 7, 35 | ralrimi 3139 |
. 2
⊢ (𝜑 → ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝐹‘𝑡)) |
37 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑡𝑥 |
38 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑡(𝑡 ∈ 𝑇 ↦ 1) |
39 | 1, 38 | nfcxfr 2904 |
. . . . . 6
⊢
Ⅎ𝑡𝐹 |
40 | 37, 39 | nfeq 2919 |
. . . . 5
⊢
Ⅎ𝑡 𝑥 = 𝐹 |
41 | | fveq1 6755 |
. . . . . . 7
⊢ (𝑥 = 𝐹 → (𝑥‘𝑡) = (𝐹‘𝑡)) |
42 | 41 | breq2d 5082 |
. . . . . 6
⊢ (𝑥 = 𝐹 → (0 ≤ (𝑥‘𝑡) ↔ 0 ≤ (𝐹‘𝑡))) |
43 | 41 | breq1d 5080 |
. . . . . 6
⊢ (𝑥 = 𝐹 → ((𝑥‘𝑡) ≤ 1 ↔ (𝐹‘𝑡) ≤ 1)) |
44 | 42, 43 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = 𝐹 → ((0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ↔ (0 ≤ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ 1))) |
45 | 40, 44 | ralbid 3158 |
. . . 4
⊢ (𝑥 = 𝐹 → (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ↔ ∀𝑡 ∈ 𝑇 (0 ≤ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ 1))) |
46 | 41 | breq1d 5080 |
. . . . 5
⊢ (𝑥 = 𝐹 → ((𝑥‘𝑡) < 𝐸 ↔ (𝐹‘𝑡) < 𝐸)) |
47 | 40, 46 | ralbid 3158 |
. . . 4
⊢ (𝑥 = 𝐹 → (∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ↔ ∀𝑡 ∈ 𝐷 (𝐹‘𝑡) < 𝐸)) |
48 | 41 | breq2d 5082 |
. . . . 5
⊢ (𝑥 = 𝐹 → ((1 − 𝐸) < (𝑥‘𝑡) ↔ (1 − 𝐸) < (𝐹‘𝑡))) |
49 | 40, 48 | ralbid 3158 |
. . . 4
⊢ (𝑥 = 𝐹 → (∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡) ↔ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝐹‘𝑡))) |
50 | 45, 47, 49 | 3anbi123d 1434 |
. . 3
⊢ (𝑥 = 𝐹 → ((∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡)) ↔ (∀𝑡 ∈ 𝑇 (0 ≤ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝐹‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝐹‘𝑡)))) |
51 | 50 | rspcev 3552 |
. 2
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑡 ∈ 𝑇 (0 ≤ (𝐹‘𝑡) ∧ (𝐹‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝐹‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝐹‘𝑡))) → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |
52 | 6, 17, 23, 36, 51 | syl13anc 1370 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑡 ∈ 𝑇 (0 ≤ (𝑥‘𝑡) ∧ (𝑥‘𝑡) ≤ 1) ∧ ∀𝑡 ∈ 𝐷 (𝑥‘𝑡) < 𝐸 ∧ ∀𝑡 ∈ 𝐵 (1 − 𝐸) < (𝑥‘𝑡))) |