Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem28 Structured version   Visualization version   GIF version

Theorem stoweidlem28 46136
Description: There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 𝑇𝑈. Here 𝑑 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem28.1 𝑡𝑈
stoweidlem28.2 𝑡𝜑
stoweidlem28.3 𝐾 = (topGen‘ran (,))
stoweidlem28.4 𝑇 = 𝐽
stoweidlem28.5 (𝜑𝐽 ∈ Comp)
stoweidlem28.6 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
stoweidlem28.7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
stoweidlem28.8 (𝜑𝑈𝐽)
Assertion
Ref Expression
stoweidlem28 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝑃   𝑇,𝑑,𝑡   𝑈,𝑑   𝑡,𝐽
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝑈(𝑡)   𝐽(𝑑)   𝐾(𝑡,𝑑)

Proof of Theorem stoweidlem28
Dummy variables 𝑐 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 12334 . . . . 5 (1 / 2) ∈ ℝ
2 halfgt0 12336 . . . . 5 0 < (1 / 2)
31, 2elrpii 12893 . . . 4 (1 / 2) ∈ ℝ+
43a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) ∈ ℝ+)
5 halflt1 12338 . . . 4 (1 / 2) < 1
65a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) < 1)
7 nfcv 2894 . . . . . . 7 𝑡𝑇
8 stoweidlem28.1 . . . . . . 7 𝑡𝑈
97, 8nfdif 4076 . . . . . 6 𝑡(𝑇𝑈)
109nfeq1 2910 . . . . 5 𝑡(𝑇𝑈) = ∅
1110rzalf 45124 . . . 4 ((𝑇𝑈) = ∅ → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
1211adantl 481 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
13 ovex 7379 . . . 4 (1 / 2) ∈ V
14 eleq1 2819 . . . . 5 (𝑑 = (1 / 2) → (𝑑 ∈ ℝ+ ↔ (1 / 2) ∈ ℝ+))
15 breq1 5092 . . . . 5 (𝑑 = (1 / 2) → (𝑑 < 1 ↔ (1 / 2) < 1))
16 breq1 5092 . . . . . 6 (𝑑 = (1 / 2) → (𝑑 ≤ (𝑃𝑡) ↔ (1 / 2) ≤ (𝑃𝑡)))
1716ralbidv 3155 . . . . 5 (𝑑 = (1 / 2) → (∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)))
1814, 15, 173anbi123d 1438 . . . 4 (𝑑 = (1 / 2) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)) ↔ ((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))))
1913, 18spcev 3556 . . 3 (((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
204, 6, 12, 19syl3anc 1373 . 2 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
21 simplll 774 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝜑)
22 simplr 768 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝑥 ∈ (𝑇𝑈))
23 simpr 484 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
24 stoweidlem28.3 . . . . . . . . . . 11 𝐾 = (topGen‘ran (,))
25 stoweidlem28.4 . . . . . . . . . . 11 𝑇 = 𝐽
26 eqid 2731 . . . . . . . . . . 11 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
27 stoweidlem28.6 . . . . . . . . . . 11 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
2824, 25, 26, 27fcnre 45132 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
30 eldifi 4078 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → 𝑥𝑇)
3130adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑥𝑇)
3229, 31ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ)
33 stoweidlem28.7 . . . . . . . . 9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
34 nfcv 2894 . . . . . . . . . . . 12 𝑥(𝑇𝑈)
35 nfv 1915 . . . . . . . . . . . 12 𝑥0 < (𝑃𝑡)
36 nfv 1915 . . . . . . . . . . . 12 𝑡0 < (𝑃𝑥)
37 fveq2 6822 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑃𝑡) = (𝑃𝑥))
3837breq2d 5101 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (0 < (𝑃𝑡) ↔ 0 < (𝑃𝑥)))
399, 34, 35, 36, 38cbvralfw 3272 . . . . . . . . . . 11 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ↔ ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4039biimpi 216 . . . . . . . . . 10 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) → ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4140r19.21bi 3224 . . . . . . . . 9 ((∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ∧ 𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4233, 41sylan 580 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4332, 42elrpd 12931 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ+)
44433adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑃𝑥) ∈ ℝ+)
45 stoweidlem28.2 . . . . . . . 8 𝑡𝜑
469nfcri 2886 . . . . . . . 8 𝑡 𝑥 ∈ (𝑇𝑈)
47 nfra1 3256 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
4845, 46, 47nf3an 1902 . . . . . . 7 𝑡(𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
49 rspa 3221 . . . . . . . . . 10 ((∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
50493ad2antl3 1188 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
51 simpl2 1193 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → 𝑥 ∈ (𝑇𝑈))
52 fvres 6841 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
5351, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
54 fvres 6841 . . . . . . . . . 10 (𝑡 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5554adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5650, 53, 553brtr3d 5120 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → (𝑃𝑥) ≤ (𝑃𝑡))
5756ex 412 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑡 ∈ (𝑇𝑈) → (𝑃𝑥) ≤ (𝑃𝑡)))
5848, 57ralrimi 3230 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))
59 eleq1 2819 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (𝑐 ∈ ℝ+ ↔ (𝑃𝑥) ∈ ℝ+))
60 breq1 5092 . . . . . . . . . 10 (𝑐 = (𝑃𝑥) → (𝑐 ≤ (𝑃𝑡) ↔ (𝑃𝑥) ≤ (𝑃𝑡)))
6160ralbidv 3155 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)))
6259, 61anbi12d 632 . . . . . . . 8 (𝑐 = (𝑃𝑥) → ((𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) ↔ ((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))))
6362spcegv 3547 . . . . . . 7 ((𝑃𝑥) ∈ ℝ+ → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6444, 63syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6544, 58, 64mp2and 699 . . . . 5 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)))
66 simpl1 1192 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝜑)
67 simprl 770 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝑐 ∈ ℝ+)
68 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
69 nfv 1915 . . . . . . . 8 𝑡 𝑐 ∈ ℝ+
70 nfra1 3256 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)
7145, 69, 70nf3an 1902 . . . . . . 7 𝑡(𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
72 eqid 2731 . . . . . . 7 if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2)) = if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2))
73283ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑃:𝑇⟶ℝ)
74 difssd 4084 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → (𝑇𝑈) ⊆ 𝑇)
75 simp2 1137 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑐 ∈ ℝ+)
76 simp3 1138 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
7771, 72, 73, 74, 75, 76stoweidlem5 46113 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7866, 67, 68, 77syl3anc 1373 . . . . 5 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7965, 78exlimddv 1936 . . . 4 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
8021, 22, 23, 79syl3anc 1373 . . 3 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
81 eqid 2731 . . . . . 6 (𝐽t (𝑇𝑈)) = (𝐽t (𝑇𝑈))
82 stoweidlem28.5 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
83 stoweidlem28.8 . . . . . . . . 9 (𝜑𝑈𝐽)
84 cmptop 23310 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
8582, 84syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
86 elssuni 4887 . . . . . . . . . . . 12 (𝑈𝐽𝑈 𝐽)
8783, 86syl 17 . . . . . . . . . . 11 (𝜑𝑈 𝐽)
8887, 25sseqtrrdi 3971 . . . . . . . . . 10 (𝜑𝑈𝑇)
8925isopn2 22947 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑈𝑇) → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9085, 88, 89syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9183, 90mpbid 232 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
92 cmpcld 23317 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
9382, 91, 92syl2anc 584 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
9493adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ∈ Comp)
9527adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑃 ∈ (𝐽 Cn 𝐾))
96 difssd 4084 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑇𝑈) ⊆ 𝑇)
9725cnrest 23200 . . . . . . 7 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
9895, 96, 97syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
99 difssd 4084 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
10025restuni 23077 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
10185, 99, 100syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
102101neeq1d 2987 . . . . . . . 8 (𝜑 → ((𝑇𝑈) ≠ ∅ ↔ (𝐽t (𝑇𝑈)) ≠ ∅))
103 df-ne 2929 . . . . . . . 8 ((𝑇𝑈) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅)
104102, 103bitr3di 286 . . . . . . 7 (𝜑 → ( (𝐽t (𝑇𝑈)) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅))
105104biimpar 477 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ≠ ∅)
10681, 24, 94, 98, 105evth2 24886 . . . . 5 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠))
107 nfcv 2894 . . . . . . 7 𝑠 (𝐽t (𝑇𝑈))
108 nfcv 2894 . . . . . . . . 9 𝑡𝐽
109 nfcv 2894 . . . . . . . . 9 𝑡t
110108, 109, 9nfov 7376 . . . . . . . 8 𝑡(𝐽t (𝑇𝑈))
111110nfuni 4863 . . . . . . 7 𝑡 (𝐽t (𝑇𝑈))
112 nfcv 2894 . . . . . . . . . 10 𝑡𝑃
113112, 9nfres 5929 . . . . . . . . 9 𝑡(𝑃 ↾ (𝑇𝑈))
114 nfcv 2894 . . . . . . . . 9 𝑡𝑥
115113, 114nffv 6832 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥)
116 nfcv 2894 . . . . . . . 8 𝑡
117 nfcv 2894 . . . . . . . . 9 𝑡𝑠
118113, 117nffv 6832 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑠)
119115, 116, 118nfbr 5136 . . . . . . 7 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠)
120 nfv 1915 . . . . . . 7 𝑠((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
121 fveq2 6822 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑃 ↾ (𝑇𝑈))‘𝑠) = ((𝑃 ↾ (𝑇𝑈))‘𝑡))
122121breq2d 5101 . . . . . . 7 (𝑠 = 𝑡 → (((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
123107, 111, 119, 120, 122cbvralfw 3272 . . . . . 6 (∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
124123rexbii 3079 . . . . 5 (∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
125106, 124sylib 218 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
1269, 111raleqf 3321 . . . . . . 7 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
127126rexeqbi1dv 3305 . . . . . 6 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
128101, 127syl 17 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
129128adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
130125, 129mpbird 257 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
13180, 130r19.29a 3140 . 2 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
13220, 131pm2.61dan 812 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  cdif 3894  wss 3897  c0 4280  ifcif 4472   cuni 4856   class class class wbr 5089  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   < clt 11146  cle 11147   / cdiv 11774  2c2 12180  +crp 12890  (,)cioo 13245  t crest 17324  topGenctg 17341  Topctop 22808  Clsdccld 22931   Cn ccn 23139  Compccmp 23301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237
This theorem is referenced by:  stoweidlem56  46164
  Copyright terms: Public domain W3C validator