Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem28 Structured version   Visualization version   GIF version

Theorem stoweidlem28 46026
Description: There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 𝑇𝑈. Here 𝑑 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem28.1 𝑡𝑈
stoweidlem28.2 𝑡𝜑
stoweidlem28.3 𝐾 = (topGen‘ran (,))
stoweidlem28.4 𝑇 = 𝐽
stoweidlem28.5 (𝜑𝐽 ∈ Comp)
stoweidlem28.6 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
stoweidlem28.7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
stoweidlem28.8 (𝜑𝑈𝐽)
Assertion
Ref Expression
stoweidlem28 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝑃   𝑇,𝑑,𝑡   𝑈,𝑑   𝑡,𝐽
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝑈(𝑡)   𝐽(𝑑)   𝐾(𝑡,𝑑)

Proof of Theorem stoweidlem28
Dummy variables 𝑐 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 12395 . . . . 5 (1 / 2) ∈ ℝ
2 halfgt0 12397 . . . . 5 0 < (1 / 2)
31, 2elrpii 12954 . . . 4 (1 / 2) ∈ ℝ+
43a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) ∈ ℝ+)
5 halflt1 12399 . . . 4 (1 / 2) < 1
65a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) < 1)
7 nfcv 2891 . . . . . . 7 𝑡𝑇
8 stoweidlem28.1 . . . . . . 7 𝑡𝑈
97, 8nfdif 4092 . . . . . 6 𝑡(𝑇𝑈)
109nfeq1 2907 . . . . 5 𝑡(𝑇𝑈) = ∅
1110rzalf 45011 . . . 4 ((𝑇𝑈) = ∅ → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
1211adantl 481 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
13 ovex 7420 . . . 4 (1 / 2) ∈ V
14 eleq1 2816 . . . . 5 (𝑑 = (1 / 2) → (𝑑 ∈ ℝ+ ↔ (1 / 2) ∈ ℝ+))
15 breq1 5110 . . . . 5 (𝑑 = (1 / 2) → (𝑑 < 1 ↔ (1 / 2) < 1))
16 breq1 5110 . . . . . 6 (𝑑 = (1 / 2) → (𝑑 ≤ (𝑃𝑡) ↔ (1 / 2) ≤ (𝑃𝑡)))
1716ralbidv 3156 . . . . 5 (𝑑 = (1 / 2) → (∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)))
1814, 15, 173anbi123d 1438 . . . 4 (𝑑 = (1 / 2) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)) ↔ ((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))))
1913, 18spcev 3572 . . 3 (((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
204, 6, 12, 19syl3anc 1373 . 2 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
21 simplll 774 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝜑)
22 simplr 768 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝑥 ∈ (𝑇𝑈))
23 simpr 484 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
24 stoweidlem28.3 . . . . . . . . . . 11 𝐾 = (topGen‘ran (,))
25 stoweidlem28.4 . . . . . . . . . . 11 𝑇 = 𝐽
26 eqid 2729 . . . . . . . . . . 11 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
27 stoweidlem28.6 . . . . . . . . . . 11 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
2824, 25, 26, 27fcnre 45019 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
30 eldifi 4094 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → 𝑥𝑇)
3130adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑥𝑇)
3229, 31ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ)
33 stoweidlem28.7 . . . . . . . . 9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
34 nfcv 2891 . . . . . . . . . . . 12 𝑥(𝑇𝑈)
35 nfv 1914 . . . . . . . . . . . 12 𝑥0 < (𝑃𝑡)
36 nfv 1914 . . . . . . . . . . . 12 𝑡0 < (𝑃𝑥)
37 fveq2 6858 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑃𝑡) = (𝑃𝑥))
3837breq2d 5119 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (0 < (𝑃𝑡) ↔ 0 < (𝑃𝑥)))
399, 34, 35, 36, 38cbvralfw 3278 . . . . . . . . . . 11 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ↔ ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4039biimpi 216 . . . . . . . . . 10 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) → ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4140r19.21bi 3229 . . . . . . . . 9 ((∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ∧ 𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4233, 41sylan 580 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4332, 42elrpd 12992 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ+)
44433adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑃𝑥) ∈ ℝ+)
45 stoweidlem28.2 . . . . . . . 8 𝑡𝜑
469nfcri 2883 . . . . . . . 8 𝑡 𝑥 ∈ (𝑇𝑈)
47 nfra1 3261 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
4845, 46, 47nf3an 1901 . . . . . . 7 𝑡(𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
49 rspa 3226 . . . . . . . . . 10 ((∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
50493ad2antl3 1188 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
51 simpl2 1193 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → 𝑥 ∈ (𝑇𝑈))
52 fvres 6877 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
5351, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
54 fvres 6877 . . . . . . . . . 10 (𝑡 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5554adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5650, 53, 553brtr3d 5138 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → (𝑃𝑥) ≤ (𝑃𝑡))
5756ex 412 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑡 ∈ (𝑇𝑈) → (𝑃𝑥) ≤ (𝑃𝑡)))
5848, 57ralrimi 3235 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))
59 eleq1 2816 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (𝑐 ∈ ℝ+ ↔ (𝑃𝑥) ∈ ℝ+))
60 breq1 5110 . . . . . . . . . 10 (𝑐 = (𝑃𝑥) → (𝑐 ≤ (𝑃𝑡) ↔ (𝑃𝑥) ≤ (𝑃𝑡)))
6160ralbidv 3156 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)))
6259, 61anbi12d 632 . . . . . . . 8 (𝑐 = (𝑃𝑥) → ((𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) ↔ ((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))))
6362spcegv 3563 . . . . . . 7 ((𝑃𝑥) ∈ ℝ+ → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6444, 63syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6544, 58, 64mp2and 699 . . . . 5 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)))
66 simpl1 1192 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝜑)
67 simprl 770 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝑐 ∈ ℝ+)
68 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
69 nfv 1914 . . . . . . . 8 𝑡 𝑐 ∈ ℝ+
70 nfra1 3261 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)
7145, 69, 70nf3an 1901 . . . . . . 7 𝑡(𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
72 eqid 2729 . . . . . . 7 if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2)) = if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2))
73283ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑃:𝑇⟶ℝ)
74 difssd 4100 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → (𝑇𝑈) ⊆ 𝑇)
75 simp2 1137 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑐 ∈ ℝ+)
76 simp3 1138 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
7771, 72, 73, 74, 75, 76stoweidlem5 46003 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7866, 67, 68, 77syl3anc 1373 . . . . 5 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7965, 78exlimddv 1935 . . . 4 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
8021, 22, 23, 79syl3anc 1373 . . 3 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
81 eqid 2729 . . . . . 6 (𝐽t (𝑇𝑈)) = (𝐽t (𝑇𝑈))
82 stoweidlem28.5 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
83 stoweidlem28.8 . . . . . . . . 9 (𝜑𝑈𝐽)
84 cmptop 23282 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
8582, 84syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
86 elssuni 4901 . . . . . . . . . . . 12 (𝑈𝐽𝑈 𝐽)
8783, 86syl 17 . . . . . . . . . . 11 (𝜑𝑈 𝐽)
8887, 25sseqtrrdi 3988 . . . . . . . . . 10 (𝜑𝑈𝑇)
8925isopn2 22919 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑈𝑇) → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9085, 88, 89syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9183, 90mpbid 232 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
92 cmpcld 23289 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
9382, 91, 92syl2anc 584 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
9493adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ∈ Comp)
9527adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑃 ∈ (𝐽 Cn 𝐾))
96 difssd 4100 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑇𝑈) ⊆ 𝑇)
9725cnrest 23172 . . . . . . 7 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
9895, 96, 97syl2anc 584 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
99 difssd 4100 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
10025restuni 23049 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
10185, 99, 100syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
102101neeq1d 2984 . . . . . . . 8 (𝜑 → ((𝑇𝑈) ≠ ∅ ↔ (𝐽t (𝑇𝑈)) ≠ ∅))
103 df-ne 2926 . . . . . . . 8 ((𝑇𝑈) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅)
104102, 103bitr3di 286 . . . . . . 7 (𝜑 → ( (𝐽t (𝑇𝑈)) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅))
105104biimpar 477 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ≠ ∅)
10681, 24, 94, 98, 105evth2 24859 . . . . 5 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠))
107 nfcv 2891 . . . . . . 7 𝑠 (𝐽t (𝑇𝑈))
108 nfcv 2891 . . . . . . . . 9 𝑡𝐽
109 nfcv 2891 . . . . . . . . 9 𝑡t
110108, 109, 9nfov 7417 . . . . . . . 8 𝑡(𝐽t (𝑇𝑈))
111110nfuni 4878 . . . . . . 7 𝑡 (𝐽t (𝑇𝑈))
112 nfcv 2891 . . . . . . . . . 10 𝑡𝑃
113112, 9nfres 5952 . . . . . . . . 9 𝑡(𝑃 ↾ (𝑇𝑈))
114 nfcv 2891 . . . . . . . . 9 𝑡𝑥
115113, 114nffv 6868 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥)
116 nfcv 2891 . . . . . . . 8 𝑡
117 nfcv 2891 . . . . . . . . 9 𝑡𝑠
118113, 117nffv 6868 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑠)
119115, 116, 118nfbr 5154 . . . . . . 7 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠)
120 nfv 1914 . . . . . . 7 𝑠((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
121 fveq2 6858 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑃 ↾ (𝑇𝑈))‘𝑠) = ((𝑃 ↾ (𝑇𝑈))‘𝑡))
122121breq2d 5119 . . . . . . 7 (𝑠 = 𝑡 → (((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
123107, 111, 119, 120, 122cbvralfw 3278 . . . . . 6 (∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
124123rexbii 3076 . . . . 5 (∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
125106, 124sylib 218 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
1269, 111raleqf 3329 . . . . . . 7 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
127126rexeqbi1dv 3312 . . . . . 6 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
128101, 127syl 17 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
129128adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
130125, 129mpbird 257 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
13180, 130r19.29a 3141 . 2 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
13220, 131pm2.61dan 812 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  cdif 3911  wss 3914  c0 4296  ifcif 4488   cuni 4871   class class class wbr 5107  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   < clt 11208  cle 11209   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  t crest 17383  topGenctg 17400  Topctop 22780  Clsdccld 22903   Cn ccn 23111  Compccmp 23273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210
This theorem is referenced by:  stoweidlem56  46054
  Copyright terms: Public domain W3C validator