Step | Hyp | Ref
| Expression |
1 | | halfre 12185 |
. . . . 5
⊢ (1 / 2)
∈ ℝ |
2 | | halfgt0 12187 |
. . . . 5
⊢ 0 < (1
/ 2) |
3 | 1, 2 | elrpii 12731 |
. . . 4
⊢ (1 / 2)
∈ ℝ+ |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → (1 / 2) ∈
ℝ+) |
5 | | halflt1 12189 |
. . . 4
⊢ (1 / 2)
< 1 |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → (1 / 2) <
1) |
7 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑡𝑇 |
8 | | stoweidlem28.1 |
. . . . . . 7
⊢
Ⅎ𝑡𝑈 |
9 | 7, 8 | nfdif 4061 |
. . . . . 6
⊢
Ⅎ𝑡(𝑇 ∖ 𝑈) |
10 | 9 | nfeq1 2922 |
. . . . 5
⊢
Ⅎ𝑡(𝑇 ∖ 𝑈) = ∅ |
11 | 10 | rzalf 42530 |
. . . 4
⊢ ((𝑇 ∖ 𝑈) = ∅ → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 / 2) ≤ (𝑃‘𝑡)) |
12 | 11 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 / 2) ≤ (𝑃‘𝑡)) |
13 | | ovex 7310 |
. . . 4
⊢ (1 / 2)
∈ V |
14 | | eleq1 2826 |
. . . . 5
⊢ (𝑑 = (1 / 2) → (𝑑 ∈ ℝ+
↔ (1 / 2) ∈ ℝ+)) |
15 | | breq1 5079 |
. . . . 5
⊢ (𝑑 = (1 / 2) → (𝑑 < 1 ↔ (1 / 2) <
1)) |
16 | | breq1 5079 |
. . . . . 6
⊢ (𝑑 = (1 / 2) → (𝑑 ≤ (𝑃‘𝑡) ↔ (1 / 2) ≤ (𝑃‘𝑡))) |
17 | 16 | ralbidv 3119 |
. . . . 5
⊢ (𝑑 = (1 / 2) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 / 2) ≤ (𝑃‘𝑡))) |
18 | 14, 15, 17 | 3anbi123d 1435 |
. . . 4
⊢ (𝑑 = (1 / 2) → ((𝑑 ∈ ℝ+
∧ 𝑑 < 1 ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡)) ↔ ((1 / 2) ∈ ℝ+
∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 / 2) ≤ (𝑃‘𝑡)))) |
19 | 13, 18 | spcev 3544 |
. . 3
⊢ (((1 / 2)
∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(1 / 2) ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |
20 | 4, 6, 12, 19 | syl3anc 1370 |
. 2
⊢ ((𝜑 ∧ (𝑇 ∖ 𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |
21 | | simplll 772 |
. . . 4
⊢ ((((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → 𝜑) |
22 | | simplr 766 |
. . . 4
⊢ ((((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → 𝑥 ∈ (𝑇 ∖ 𝑈)) |
23 | | simpr 485 |
. . . 4
⊢ ((((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
24 | | stoweidlem28.3 |
. . . . . . . . . . 11
⊢ 𝐾 = (topGen‘ran
(,)) |
25 | | stoweidlem28.4 |
. . . . . . . . . . 11
⊢ 𝑇 = ∪
𝐽 |
26 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) |
27 | | stoweidlem28.6 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
28 | 24, 25, 26, 27 | fcnre 42538 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃:𝑇⟶ℝ) |
29 | 28 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) → 𝑃:𝑇⟶ℝ) |
30 | | eldifi 4062 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑇 ∖ 𝑈) → 𝑥 ∈ 𝑇) |
31 | 30 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) → 𝑥 ∈ 𝑇) |
32 | 29, 31 | ffvelrnd 6964 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑥) ∈ ℝ) |
33 | | stoweidlem28.7 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑡 ∈ (𝑇 ∖ 𝑈)0 < (𝑃‘𝑡)) |
34 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑇 ∖ 𝑈) |
35 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥0 <
(𝑃‘𝑡) |
36 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑡0 <
(𝑃‘𝑥) |
37 | | fveq2 6776 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (𝑃‘𝑡) = (𝑃‘𝑥)) |
38 | 37 | breq2d 5088 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑥 → (0 < (𝑃‘𝑡) ↔ 0 < (𝑃‘𝑥))) |
39 | 9, 34, 35, 36, 38 | cbvralfw 3367 |
. . . . . . . . . . 11
⊢
(∀𝑡 ∈
(𝑇 ∖ 𝑈)0 < (𝑃‘𝑡) ↔ ∀𝑥 ∈ (𝑇 ∖ 𝑈)0 < (𝑃‘𝑥)) |
40 | 39 | biimpi 215 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
(𝑇 ∖ 𝑈)0 < (𝑃‘𝑡) → ∀𝑥 ∈ (𝑇 ∖ 𝑈)0 < (𝑃‘𝑥)) |
41 | 40 | r19.21bi 3134 |
. . . . . . . . 9
⊢
((∀𝑡 ∈
(𝑇 ∖ 𝑈)0 < (𝑃‘𝑡) ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) → 0 < (𝑃‘𝑥)) |
42 | 33, 41 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) → 0 < (𝑃‘𝑥)) |
43 | 32, 42 | elrpd 12767 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑥) ∈
ℝ+) |
44 | 43 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → (𝑃‘𝑥) ∈
ℝ+) |
45 | | stoweidlem28.2 |
. . . . . . . 8
⊢
Ⅎ𝑡𝜑 |
46 | 9 | nfcri 2894 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑥 ∈ (𝑇 ∖ 𝑈) |
47 | | nfra1 3144 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) |
48 | 45, 46, 47 | nf3an 1904 |
. . . . . . 7
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
49 | | rspa 3132 |
. . . . . . . . . 10
⊢
((∀𝑡 ∈
(𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
50 | 49 | 3ad2antl3 1186 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
51 | | simpl2 1191 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → 𝑥 ∈ (𝑇 ∖ 𝑈)) |
52 | | fvres 6795 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝑇 ∖ 𝑈) → ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) = (𝑃‘𝑥)) |
53 | 51, 52 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) = (𝑃‘𝑥)) |
54 | | fvres 6795 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝑇 ∖ 𝑈) → ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) = (𝑃‘𝑡)) |
55 | 54 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) = (𝑃‘𝑡)) |
56 | 50, 53, 55 | 3brtr3d 5107 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇 ∖ 𝑈)) → (𝑃‘𝑥) ≤ (𝑃‘𝑡)) |
57 | 56 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → (𝑡 ∈ (𝑇 ∖ 𝑈) → (𝑃‘𝑥) ≤ (𝑃‘𝑡))) |
58 | 48, 57 | ralrimi 3141 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑃‘𝑥) ≤ (𝑃‘𝑡)) |
59 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑐 = (𝑃‘𝑥) → (𝑐 ∈ ℝ+ ↔ (𝑃‘𝑥) ∈
ℝ+)) |
60 | | breq1 5079 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑃‘𝑥) → (𝑐 ≤ (𝑃‘𝑡) ↔ (𝑃‘𝑥) ≤ (𝑃‘𝑡))) |
61 | 60 | ralbidv 3119 |
. . . . . . . . 9
⊢ (𝑐 = (𝑃‘𝑥) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡) ↔ ∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑃‘𝑥) ≤ (𝑃‘𝑡))) |
62 | 59, 61 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑐 = (𝑃‘𝑥) → ((𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) ↔ ((𝑃‘𝑥) ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑃‘𝑥) ≤ (𝑃‘𝑡)))) |
63 | 62 | spcegv 3535 |
. . . . . . 7
⊢ ((𝑃‘𝑥) ∈ ℝ+ → (((𝑃‘𝑥) ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑃‘𝑥) ≤ (𝑃‘𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)))) |
64 | 44, 63 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → (((𝑃‘𝑥) ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)(𝑃‘𝑥) ≤ (𝑃‘𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)))) |
65 | 44, 58, 64 | mp2and 696 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡))) |
66 | | simpl1 1190 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡))) → 𝜑) |
67 | | simprl 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡))) → 𝑐 ∈ ℝ+) |
68 | | simprr 770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡))) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) |
69 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑐 ∈
ℝ+ |
70 | | nfra1 3144 |
. . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡) |
71 | 45, 69, 70 | nf3an 1904 |
. . . . . . 7
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) |
72 | | eqid 2738 |
. . . . . . 7
⊢ if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2)) = if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2)) |
73 | 28 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) → 𝑃:𝑇⟶ℝ) |
74 | | difssd 4068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) → (𝑇 ∖ 𝑈) ⊆ 𝑇) |
75 | | simp2 1136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) → 𝑐 ∈ ℝ+) |
76 | | simp3 1137 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) → ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) |
77 | 71, 72, 73, 74, 75, 76 | stoweidlem5 43516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |
78 | 66, 67, 68, 77 | syl3anc 1370 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧
∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑐 ≤ (𝑃‘𝑡))) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |
79 | 65, 78 | exlimddv 1938 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ∖ 𝑈) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |
80 | 21, 22, 23, 79 | syl3anc 1370 |
. . 3
⊢ ((((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) ∧ 𝑥 ∈ (𝑇 ∖ 𝑈)) ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |
81 | | eqid 2738 |
. . . . . 6
⊢ ∪ (𝐽
↾t (𝑇
∖ 𝑈)) = ∪ (𝐽
↾t (𝑇
∖ 𝑈)) |
82 | | stoweidlem28.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ Comp) |
83 | | stoweidlem28.8 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
84 | | cmptop 22544 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
85 | 82, 84 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ Top) |
86 | | elssuni 4873 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐽 → 𝑈 ⊆ ∪ 𝐽) |
87 | 83, 86 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ ∪ 𝐽) |
88 | 87, 25 | sseqtrrdi 3973 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ⊆ 𝑇) |
89 | 25 | isopn2 22181 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑈 ⊆ 𝑇) → (𝑈 ∈ 𝐽 ↔ (𝑇 ∖ 𝑈) ∈ (Clsd‘𝐽))) |
90 | 85, 88, 89 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈 ∈ 𝐽 ↔ (𝑇 ∖ 𝑈) ∈ (Clsd‘𝐽))) |
91 | 83, 90 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → (𝑇 ∖ 𝑈) ∈ (Clsd‘𝐽)) |
92 | | cmpcld 22551 |
. . . . . . . 8
⊢ ((𝐽 ∈ Comp ∧ (𝑇 ∖ 𝑈) ∈ (Clsd‘𝐽)) → (𝐽 ↾t (𝑇 ∖ 𝑈)) ∈ Comp) |
93 | 82, 91, 92 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t (𝑇 ∖ 𝑈)) ∈ Comp) |
94 | 93 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → (𝐽 ↾t (𝑇 ∖ 𝑈)) ∈ Comp) |
95 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → 𝑃 ∈ (𝐽 Cn 𝐾)) |
96 | | difssd 4068 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → (𝑇 ∖ 𝑈) ⊆ 𝑇) |
97 | 25 | cnrest 22434 |
. . . . . . 7
⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ (𝑇 ∖ 𝑈) ⊆ 𝑇) → (𝑃 ↾ (𝑇 ∖ 𝑈)) ∈ ((𝐽 ↾t (𝑇 ∖ 𝑈)) Cn 𝐾)) |
98 | 95, 96, 97 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → (𝑃 ↾ (𝑇 ∖ 𝑈)) ∈ ((𝐽 ↾t (𝑇 ∖ 𝑈)) Cn 𝐾)) |
99 | | difssd 4068 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 ∖ 𝑈) ⊆ 𝑇) |
100 | 25 | restuni 22311 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (𝑇 ∖ 𝑈) ⊆ 𝑇) → (𝑇 ∖ 𝑈) = ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))) |
101 | 85, 99, 100 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ∖ 𝑈) = ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))) |
102 | 101 | neeq1d 3003 |
. . . . . . . 8
⊢ (𝜑 → ((𝑇 ∖ 𝑈) ≠ ∅ ↔ ∪ (𝐽
↾t (𝑇
∖ 𝑈)) ≠
∅)) |
103 | | df-ne 2944 |
. . . . . . . 8
⊢ ((𝑇 ∖ 𝑈) ≠ ∅ ↔ ¬ (𝑇 ∖ 𝑈) = ∅) |
104 | 102, 103 | bitr3di 286 |
. . . . . . 7
⊢ (𝜑 → (∪ (𝐽
↾t (𝑇
∖ 𝑈)) ≠ ∅
↔ ¬ (𝑇 ∖
𝑈) =
∅)) |
105 | 104 | biimpar 478 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → ∪ (𝐽
↾t (𝑇
∖ 𝑈)) ≠
∅) |
106 | 81, 24, 94, 98, 105 | evth2 24121 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → ∃𝑥 ∈ ∪ (𝐽
↾t (𝑇
∖ 𝑈))∀𝑠 ∈ ∪ (𝐽
↾t (𝑇
∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑠)) |
107 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑠∪ (𝐽
↾t (𝑇
∖ 𝑈)) |
108 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝐽 |
109 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑡
↾t |
110 | 108, 109,
9 | nfov 7307 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝐽 ↾t (𝑇 ∖ 𝑈)) |
111 | 110 | nfuni 4848 |
. . . . . . 7
⊢
Ⅎ𝑡∪ (𝐽
↾t (𝑇
∖ 𝑈)) |
112 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑡𝑃 |
113 | 112, 9 | nfres 5895 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑃 ↾ (𝑇 ∖ 𝑈)) |
114 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑥 |
115 | 113, 114 | nffv 6786 |
. . . . . . . 8
⊢
Ⅎ𝑡((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) |
116 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑡
≤ |
117 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑠 |
118 | 113, 117 | nffv 6786 |
. . . . . . . 8
⊢
Ⅎ𝑡((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑠) |
119 | 115, 116,
118 | nfbr 5123 |
. . . . . . 7
⊢
Ⅎ𝑡((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑠) |
120 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑠((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) |
121 | | fveq2 6776 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑠) = ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
122 | 121 | breq2d 5088 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑠) ↔ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡))) |
123 | 107, 111,
119, 120, 122 | cbvralfw 3367 |
. . . . . 6
⊢
(∀𝑠 ∈
∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑠) ↔ ∀𝑡 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
124 | 123 | rexbii 3180 |
. . . . 5
⊢
(∃𝑥 ∈
∪ (𝐽 ↾t (𝑇 ∖ 𝑈))∀𝑠 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑠) ↔ ∃𝑥 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))∀𝑡 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
125 | 106, 124 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → ∃𝑥 ∈ ∪ (𝐽
↾t (𝑇
∖ 𝑈))∀𝑡 ∈ ∪ (𝐽
↾t (𝑇
∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
126 | 9, 111 | raleqf 3331 |
. . . . . . 7
⊢ ((𝑇 ∖ 𝑈) = ∪ (𝐽 ↾t (𝑇 ∖ 𝑈)) → (∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) ↔ ∀𝑡 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡))) |
127 | 126 | rexeqbi1dv 3340 |
. . . . . 6
⊢ ((𝑇 ∖ 𝑈) = ∪ (𝐽 ↾t (𝑇 ∖ 𝑈)) → (∃𝑥 ∈ (𝑇 ∖ 𝑈)∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) ↔ ∃𝑥 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))∀𝑡 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡))) |
128 | 101, 127 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ (𝑇 ∖ 𝑈)∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) ↔ ∃𝑥 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))∀𝑡 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡))) |
129 | 128 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → (∃𝑥 ∈ (𝑇 ∖ 𝑈)∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡) ↔ ∃𝑥 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))∀𝑡 ∈ ∪ (𝐽 ↾t (𝑇 ∖ 𝑈))((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡))) |
130 | 125, 129 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → ∃𝑥 ∈ (𝑇 ∖ 𝑈)∀𝑡 ∈ (𝑇 ∖ 𝑈)((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇 ∖ 𝑈))‘𝑡)) |
131 | 80, 130 | r19.29a 3217 |
. 2
⊢ ((𝜑 ∧ ¬ (𝑇 ∖ 𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |
132 | 20, 131 | pm2.61dan 810 |
1
⊢ (𝜑 → ∃𝑑(𝑑 ∈ ℝ+ ∧ 𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇 ∖ 𝑈)𝑑 ≤ (𝑃‘𝑡))) |