Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem28 Structured version   Visualization version   GIF version

Theorem stoweidlem28 45949
Description: There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 𝑇𝑈. Here 𝑑 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem28.1 𝑡𝑈
stoweidlem28.2 𝑡𝜑
stoweidlem28.3 𝐾 = (topGen‘ran (,))
stoweidlem28.4 𝑇 = 𝐽
stoweidlem28.5 (𝜑𝐽 ∈ Comp)
stoweidlem28.6 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
stoweidlem28.7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
stoweidlem28.8 (𝜑𝑈𝐽)
Assertion
Ref Expression
stoweidlem28 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝑃   𝑇,𝑑,𝑡   𝑈,𝑑   𝑡,𝐽
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝑈(𝑡)   𝐽(𝑑)   𝐾(𝑡,𝑑)

Proof of Theorem stoweidlem28
Dummy variables 𝑐 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 12507 . . . . 5 (1 / 2) ∈ ℝ
2 halfgt0 12509 . . . . 5 0 < (1 / 2)
31, 2elrpii 13060 . . . 4 (1 / 2) ∈ ℝ+
43a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) ∈ ℝ+)
5 halflt1 12511 . . . 4 (1 / 2) < 1
65a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) < 1)
7 nfcv 2908 . . . . . . 7 𝑡𝑇
8 stoweidlem28.1 . . . . . . 7 𝑡𝑈
97, 8nfdif 4152 . . . . . 6 𝑡(𝑇𝑈)
109nfeq1 2924 . . . . 5 𝑡(𝑇𝑈) = ∅
1110rzalf 44917 . . . 4 ((𝑇𝑈) = ∅ → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
1211adantl 481 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
13 ovex 7481 . . . 4 (1 / 2) ∈ V
14 eleq1 2832 . . . . 5 (𝑑 = (1 / 2) → (𝑑 ∈ ℝ+ ↔ (1 / 2) ∈ ℝ+))
15 breq1 5169 . . . . 5 (𝑑 = (1 / 2) → (𝑑 < 1 ↔ (1 / 2) < 1))
16 breq1 5169 . . . . . 6 (𝑑 = (1 / 2) → (𝑑 ≤ (𝑃𝑡) ↔ (1 / 2) ≤ (𝑃𝑡)))
1716ralbidv 3184 . . . . 5 (𝑑 = (1 / 2) → (∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)))
1814, 15, 173anbi123d 1436 . . . 4 (𝑑 = (1 / 2) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)) ↔ ((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))))
1913, 18spcev 3619 . . 3 (((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
204, 6, 12, 19syl3anc 1371 . 2 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
21 simplll 774 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝜑)
22 simplr 768 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝑥 ∈ (𝑇𝑈))
23 simpr 484 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
24 stoweidlem28.3 . . . . . . . . . . 11 𝐾 = (topGen‘ran (,))
25 stoweidlem28.4 . . . . . . . . . . 11 𝑇 = 𝐽
26 eqid 2740 . . . . . . . . . . 11 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
27 stoweidlem28.6 . . . . . . . . . . 11 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
2824, 25, 26, 27fcnre 44925 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
2928adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
30 eldifi 4154 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → 𝑥𝑇)
3130adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑥𝑇)
3229, 31ffvelcdmd 7119 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ)
33 stoweidlem28.7 . . . . . . . . 9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
34 nfcv 2908 . . . . . . . . . . . 12 𝑥(𝑇𝑈)
35 nfv 1913 . . . . . . . . . . . 12 𝑥0 < (𝑃𝑡)
36 nfv 1913 . . . . . . . . . . . 12 𝑡0 < (𝑃𝑥)
37 fveq2 6920 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑃𝑡) = (𝑃𝑥))
3837breq2d 5178 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (0 < (𝑃𝑡) ↔ 0 < (𝑃𝑥)))
399, 34, 35, 36, 38cbvralfw 3310 . . . . . . . . . . 11 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ↔ ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4039biimpi 216 . . . . . . . . . 10 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) → ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4140r19.21bi 3257 . . . . . . . . 9 ((∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ∧ 𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4233, 41sylan 579 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4332, 42elrpd 13096 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ+)
44433adant3 1132 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑃𝑥) ∈ ℝ+)
45 stoweidlem28.2 . . . . . . . 8 𝑡𝜑
469nfcri 2900 . . . . . . . 8 𝑡 𝑥 ∈ (𝑇𝑈)
47 nfra1 3290 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
4845, 46, 47nf3an 1900 . . . . . . 7 𝑡(𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
49 rspa 3254 . . . . . . . . . 10 ((∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
50493ad2antl3 1187 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
51 simpl2 1192 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → 𝑥 ∈ (𝑇𝑈))
52 fvres 6939 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
5351, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
54 fvres 6939 . . . . . . . . . 10 (𝑡 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5554adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5650, 53, 553brtr3d 5197 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → (𝑃𝑥) ≤ (𝑃𝑡))
5756ex 412 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑡 ∈ (𝑇𝑈) → (𝑃𝑥) ≤ (𝑃𝑡)))
5848, 57ralrimi 3263 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))
59 eleq1 2832 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (𝑐 ∈ ℝ+ ↔ (𝑃𝑥) ∈ ℝ+))
60 breq1 5169 . . . . . . . . . 10 (𝑐 = (𝑃𝑥) → (𝑐 ≤ (𝑃𝑡) ↔ (𝑃𝑥) ≤ (𝑃𝑡)))
6160ralbidv 3184 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)))
6259, 61anbi12d 631 . . . . . . . 8 (𝑐 = (𝑃𝑥) → ((𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) ↔ ((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))))
6362spcegv 3610 . . . . . . 7 ((𝑃𝑥) ∈ ℝ+ → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6444, 63syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6544, 58, 64mp2and 698 . . . . 5 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)))
66 simpl1 1191 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝜑)
67 simprl 770 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝑐 ∈ ℝ+)
68 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
69 nfv 1913 . . . . . . . 8 𝑡 𝑐 ∈ ℝ+
70 nfra1 3290 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)
7145, 69, 70nf3an 1900 . . . . . . 7 𝑡(𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
72 eqid 2740 . . . . . . 7 if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2)) = if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2))
73283ad2ant1 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑃:𝑇⟶ℝ)
74 difssd 4160 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → (𝑇𝑈) ⊆ 𝑇)
75 simp2 1137 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑐 ∈ ℝ+)
76 simp3 1138 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
7771, 72, 73, 74, 75, 76stoweidlem5 45926 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7866, 67, 68, 77syl3anc 1371 . . . . 5 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7965, 78exlimddv 1934 . . . 4 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
8021, 22, 23, 79syl3anc 1371 . . 3 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
81 eqid 2740 . . . . . 6 (𝐽t (𝑇𝑈)) = (𝐽t (𝑇𝑈))
82 stoweidlem28.5 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
83 stoweidlem28.8 . . . . . . . . 9 (𝜑𝑈𝐽)
84 cmptop 23424 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
8582, 84syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
86 elssuni 4961 . . . . . . . . . . . 12 (𝑈𝐽𝑈 𝐽)
8783, 86syl 17 . . . . . . . . . . 11 (𝜑𝑈 𝐽)
8887, 25sseqtrrdi 4060 . . . . . . . . . 10 (𝜑𝑈𝑇)
8925isopn2 23061 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑈𝑇) → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9085, 88, 89syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9183, 90mpbid 232 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
92 cmpcld 23431 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
9382, 91, 92syl2anc 583 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
9493adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ∈ Comp)
9527adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑃 ∈ (𝐽 Cn 𝐾))
96 difssd 4160 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑇𝑈) ⊆ 𝑇)
9725cnrest 23314 . . . . . . 7 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
9895, 96, 97syl2anc 583 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
99 difssd 4160 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
10025restuni 23191 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
10185, 99, 100syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
102101neeq1d 3006 . . . . . . . 8 (𝜑 → ((𝑇𝑈) ≠ ∅ ↔ (𝐽t (𝑇𝑈)) ≠ ∅))
103 df-ne 2947 . . . . . . . 8 ((𝑇𝑈) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅)
104102, 103bitr3di 286 . . . . . . 7 (𝜑 → ( (𝐽t (𝑇𝑈)) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅))
105104biimpar 477 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ≠ ∅)
10681, 24, 94, 98, 105evth2 25011 . . . . 5 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠))
107 nfcv 2908 . . . . . . 7 𝑠 (𝐽t (𝑇𝑈))
108 nfcv 2908 . . . . . . . . 9 𝑡𝐽
109 nfcv 2908 . . . . . . . . 9 𝑡t
110108, 109, 9nfov 7478 . . . . . . . 8 𝑡(𝐽t (𝑇𝑈))
111110nfuni 4938 . . . . . . 7 𝑡 (𝐽t (𝑇𝑈))
112 nfcv 2908 . . . . . . . . . 10 𝑡𝑃
113112, 9nfres 6011 . . . . . . . . 9 𝑡(𝑃 ↾ (𝑇𝑈))
114 nfcv 2908 . . . . . . . . 9 𝑡𝑥
115113, 114nffv 6930 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥)
116 nfcv 2908 . . . . . . . 8 𝑡
117 nfcv 2908 . . . . . . . . 9 𝑡𝑠
118113, 117nffv 6930 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑠)
119115, 116, 118nfbr 5213 . . . . . . 7 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠)
120 nfv 1913 . . . . . . 7 𝑠((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
121 fveq2 6920 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑃 ↾ (𝑇𝑈))‘𝑠) = ((𝑃 ↾ (𝑇𝑈))‘𝑡))
122121breq2d 5178 . . . . . . 7 (𝑠 = 𝑡 → (((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
123107, 111, 119, 120, 122cbvralfw 3310 . . . . . 6 (∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
124123rexbii 3100 . . . . 5 (∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
125106, 124sylib 218 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
1269, 111raleqf 3361 . . . . . . 7 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
127126rexeqbi1dv 3347 . . . . . 6 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
128101, 127syl 17 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
129128adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
130125, 129mpbird 257 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
13180, 130r19.29a 3168 . 2 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
13220, 131pm2.61dan 812 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wnf 1781  wcel 2108  wnfc 2893  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  c0 4352  ifcif 4548   cuni 4931   class class class wbr 5166  ran crn 5701  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  +crp 13057  (,)cioo 13407  t crest 17480  topGenctg 17497  Topctop 22920  Clsdccld 23045   Cn ccn 23253  Compccmp 23415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353
This theorem is referenced by:  stoweidlem56  45977
  Copyright terms: Public domain W3C validator