Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem28 Structured version   Visualization version   GIF version

Theorem stoweidlem28 42320
Description: There exists a δ as in Lemma 1 [BrosowskiDeutsh] p. 90: 0 < delta < 1 and p >= delta on 𝑇𝑈. Here 𝑑 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem28.1 𝑡𝑈
stoweidlem28.2 𝑡𝜑
stoweidlem28.3 𝐾 = (topGen‘ran (,))
stoweidlem28.4 𝑇 = 𝐽
stoweidlem28.5 (𝜑𝐽 ∈ Comp)
stoweidlem28.6 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
stoweidlem28.7 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
stoweidlem28.8 (𝜑𝑈𝐽)
Assertion
Ref Expression
stoweidlem28 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Distinct variable groups:   𝑡,𝑑,𝑃   𝑇,𝑑,𝑡   𝑈,𝑑   𝑡,𝐽
Allowed substitution hints:   𝜑(𝑡,𝑑)   𝑈(𝑡)   𝐽(𝑑)   𝐾(𝑡,𝑑)

Proof of Theorem stoweidlem28
Dummy variables 𝑐 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 halfre 11854 . . . . 5 (1 / 2) ∈ ℝ
2 halfgt0 11856 . . . . 5 0 < (1 / 2)
31, 2elrpii 12395 . . . 4 (1 / 2) ∈ ℝ+
43a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) ∈ ℝ+)
5 halflt1 11858 . . . 4 (1 / 2) < 1
65a1i 11 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → (1 / 2) < 1)
7 nfcv 2979 . . . . . . 7 𝑡𝑇
8 stoweidlem28.1 . . . . . . 7 𝑡𝑈
97, 8nfdif 4104 . . . . . 6 𝑡(𝑇𝑈)
109nfeq1 2995 . . . . 5 𝑡(𝑇𝑈) = ∅
1110rzalf 41281 . . . 4 ((𝑇𝑈) = ∅ → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
1211adantl 484 . . 3 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))
13 ovex 7191 . . . 4 (1 / 2) ∈ V
14 eleq1 2902 . . . . 5 (𝑑 = (1 / 2) → (𝑑 ∈ ℝ+ ↔ (1 / 2) ∈ ℝ+))
15 breq1 5071 . . . . 5 (𝑑 = (1 / 2) → (𝑑 < 1 ↔ (1 / 2) < 1))
16 breq1 5071 . . . . . 6 (𝑑 = (1 / 2) → (𝑑 ≤ (𝑃𝑡) ↔ (1 / 2) ≤ (𝑃𝑡)))
1716ralbidv 3199 . . . . 5 (𝑑 = (1 / 2) → (∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)))
1814, 15, 173anbi123d 1432 . . . 4 (𝑑 = (1 / 2) → ((𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)) ↔ ((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡))))
1913, 18spcev 3609 . . 3 (((1 / 2) ∈ ℝ+ ∧ (1 / 2) < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)(1 / 2) ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
204, 6, 12, 19syl3anc 1367 . 2 ((𝜑 ∧ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
21 simplll 773 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝜑)
22 simplr 767 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → 𝑥 ∈ (𝑇𝑈))
23 simpr 487 . . . 4 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
24 stoweidlem28.3 . . . . . . . . . . 11 𝐾 = (topGen‘ran (,))
25 stoweidlem28.4 . . . . . . . . . . 11 𝑇 = 𝐽
26 eqid 2823 . . . . . . . . . . 11 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
27 stoweidlem28.6 . . . . . . . . . . 11 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
2824, 25, 26, 27fcnre 41289 . . . . . . . . . 10 (𝜑𝑃:𝑇⟶ℝ)
2928adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑃:𝑇⟶ℝ)
30 eldifi 4105 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → 𝑥𝑇)
3130adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑇𝑈)) → 𝑥𝑇)
3229, 31ffvelrnd 6854 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ)
33 stoweidlem28.7 . . . . . . . . 9 (𝜑 → ∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡))
34 nfcv 2979 . . . . . . . . . . . 12 𝑥(𝑇𝑈)
35 nfv 1915 . . . . . . . . . . . 12 𝑥0 < (𝑃𝑡)
36 nfv 1915 . . . . . . . . . . . 12 𝑡0 < (𝑃𝑥)
37 fveq2 6672 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑃𝑡) = (𝑃𝑥))
3837breq2d 5080 . . . . . . . . . . . 12 (𝑡 = 𝑥 → (0 < (𝑃𝑡) ↔ 0 < (𝑃𝑥)))
399, 34, 35, 36, 38cbvralfw 3439 . . . . . . . . . . 11 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ↔ ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4039biimpi 218 . . . . . . . . . 10 (∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) → ∀𝑥 ∈ (𝑇𝑈)0 < (𝑃𝑥))
4140r19.21bi 3210 . . . . . . . . 9 ((∀𝑡 ∈ (𝑇𝑈)0 < (𝑃𝑡) ∧ 𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4233, 41sylan 582 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇𝑈)) → 0 < (𝑃𝑥))
4332, 42elrpd 12431 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈)) → (𝑃𝑥) ∈ ℝ+)
44433adant3 1128 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑃𝑥) ∈ ℝ+)
45 stoweidlem28.2 . . . . . . . 8 𝑡𝜑
469nfcri 2973 . . . . . . . 8 𝑡 𝑥 ∈ (𝑇𝑈)
47 nfra1 3221 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
4845, 46, 47nf3an 1902 . . . . . . 7 𝑡(𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
49 rspa 3208 . . . . . . . . . 10 ((∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
50493ad2antl3 1183 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
51 simpl2 1188 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → 𝑥 ∈ (𝑇𝑈))
52 fvres 6691 . . . . . . . . . 10 (𝑥 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
5351, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑥) = (𝑃𝑥))
54 fvres 6691 . . . . . . . . . 10 (𝑡 ∈ (𝑇𝑈) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5554adantl 484 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → ((𝑃 ↾ (𝑇𝑈))‘𝑡) = (𝑃𝑡))
5650, 53, 553brtr3d 5099 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ 𝑡 ∈ (𝑇𝑈)) → (𝑃𝑥) ≤ (𝑃𝑡))
5756ex 415 . . . . . . 7 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (𝑡 ∈ (𝑇𝑈) → (𝑃𝑥) ≤ (𝑃𝑡)))
5848, 57ralrimi 3218 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))
59 eleq1 2902 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (𝑐 ∈ ℝ+ ↔ (𝑃𝑥) ∈ ℝ+))
60 breq1 5071 . . . . . . . . . 10 (𝑐 = (𝑃𝑥) → (𝑐 ≤ (𝑃𝑡) ↔ (𝑃𝑥) ≤ (𝑃𝑡)))
6160ralbidv 3199 . . . . . . . . 9 (𝑐 = (𝑃𝑥) → (∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡) ↔ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)))
6259, 61anbi12d 632 . . . . . . . 8 (𝑐 = (𝑃𝑥) → ((𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) ↔ ((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡))))
6362spcegv 3599 . . . . . . 7 ((𝑃𝑥) ∈ ℝ+ → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6444, 63syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → (((𝑃𝑥) ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)(𝑃𝑥) ≤ (𝑃𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))))
6544, 58, 64mp2and 697 . . . . 5 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑐(𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)))
66 simpl1 1187 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝜑)
67 simprl 769 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → 𝑐 ∈ ℝ+)
68 simprr 771 . . . . . 6 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
69 nfv 1915 . . . . . . . 8 𝑡 𝑐 ∈ ℝ+
70 nfra1 3221 . . . . . . . 8 𝑡𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)
7145, 69, 70nf3an 1902 . . . . . . 7 𝑡(𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
72 eqid 2823 . . . . . . 7 if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2)) = if(𝑐 ≤ (1 / 2), 𝑐, (1 / 2))
73283ad2ant1 1129 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑃:𝑇⟶ℝ)
74 difssd 4111 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → (𝑇𝑈) ⊆ 𝑇)
75 simp2 1133 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → 𝑐 ∈ ℝ+)
76 simp3 1134 . . . . . . 7 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))
7771, 72, 73, 74, 75, 76stoweidlem5 42297 . . . . . 6 ((𝜑𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7866, 67, 68, 77syl3anc 1367 . . . . 5 (((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) ∧ (𝑐 ∈ ℝ+ ∧ ∀𝑡 ∈ (𝑇𝑈)𝑐 ≤ (𝑃𝑡))) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
7965, 78exlimddv 1936 . . . 4 ((𝜑𝑥 ∈ (𝑇𝑈) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
8021, 22, 23, 79syl3anc 1367 . . 3 ((((𝜑 ∧ ¬ (𝑇𝑈) = ∅) ∧ 𝑥 ∈ (𝑇𝑈)) ∧ ∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
81 eqid 2823 . . . . . 6 (𝐽t (𝑇𝑈)) = (𝐽t (𝑇𝑈))
82 stoweidlem28.5 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
83 stoweidlem28.8 . . . . . . . . 9 (𝜑𝑈𝐽)
84 cmptop 22005 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
8582, 84syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
86 elssuni 4870 . . . . . . . . . . . 12 (𝑈𝐽𝑈 𝐽)
8783, 86syl 17 . . . . . . . . . . 11 (𝜑𝑈 𝐽)
8887, 25sseqtrrdi 4020 . . . . . . . . . 10 (𝜑𝑈𝑇)
8925isopn2 21642 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑈𝑇) → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9085, 88, 89syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑈𝐽 ↔ (𝑇𝑈) ∈ (Clsd‘𝐽)))
9183, 90mpbid 234 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
92 cmpcld 22012 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
9382, 91, 92syl2anc 586 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
9493adantr 483 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ∈ Comp)
9527adantr 483 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → 𝑃 ∈ (𝐽 Cn 𝐾))
96 difssd 4111 . . . . . . 7 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑇𝑈) ⊆ 𝑇)
9725cnrest 21895 . . . . . . 7 ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
9895, 96, 97syl2anc 586 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝑃 ↾ (𝑇𝑈)) ∈ ((𝐽t (𝑇𝑈)) Cn 𝐾))
99 df-ne 3019 . . . . . . . 8 ((𝑇𝑈) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅)
100 difssd 4111 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
10125restuni 21772 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
10285, 100, 101syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑇𝑈) = (𝐽t (𝑇𝑈)))
103102neeq1d 3077 . . . . . . . 8 (𝜑 → ((𝑇𝑈) ≠ ∅ ↔ (𝐽t (𝑇𝑈)) ≠ ∅))
10499, 103syl5rbbr 288 . . . . . . 7 (𝜑 → ( (𝐽t (𝑇𝑈)) ≠ ∅ ↔ ¬ (𝑇𝑈) = ∅))
105104biimpar 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (𝐽t (𝑇𝑈)) ≠ ∅)
10681, 24, 94, 98, 105evth2 23566 . . . . 5 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠))
107 nfcv 2979 . . . . . . 7 𝑠 (𝐽t (𝑇𝑈))
108 nfcv 2979 . . . . . . . . 9 𝑡𝐽
109 nfcv 2979 . . . . . . . . 9 𝑡t
110108, 109, 9nfov 7188 . . . . . . . 8 𝑡(𝐽t (𝑇𝑈))
111110nfuni 4847 . . . . . . 7 𝑡 (𝐽t (𝑇𝑈))
112 nfcv 2979 . . . . . . . . . 10 𝑡𝑃
113112, 9nfres 5857 . . . . . . . . 9 𝑡(𝑃 ↾ (𝑇𝑈))
114 nfcv 2979 . . . . . . . . 9 𝑡𝑥
115113, 114nffv 6682 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥)
116 nfcv 2979 . . . . . . . 8 𝑡
117 nfcv 2979 . . . . . . . . 9 𝑡𝑠
118113, 117nffv 6682 . . . . . . . 8 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑠)
119115, 116, 118nfbr 5115 . . . . . . 7 𝑡((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠)
120 nfv 1915 . . . . . . 7 𝑠((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)
121 fveq2 6672 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑃 ↾ (𝑇𝑈))‘𝑠) = ((𝑃 ↾ (𝑇𝑈))‘𝑡))
122121breq2d 5080 . . . . . . 7 (𝑠 = 𝑡 → (((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
123107, 111, 119, 120, 122cbvralfw 3439 . . . . . 6 (∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
124123rexbii 3249 . . . . 5 (∃𝑥 (𝐽t (𝑇𝑈))∀𝑠 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑠) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
125106, 124sylib 220 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
1269, 111raleqf 3399 . . . . . . 7 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
127126rexeqbi1dv 3406 . . . . . 6 ((𝑇𝑈) = (𝐽t (𝑇𝑈)) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
128102, 127syl 17 . . . . 5 (𝜑 → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
129128adantr 483 . . . 4 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → (∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡) ↔ ∃𝑥 (𝐽t (𝑇𝑈))∀𝑡 (𝐽t (𝑇𝑈))((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡)))
130125, 129mpbird 259 . . 3 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑥 ∈ (𝑇𝑈)∀𝑡 ∈ (𝑇𝑈)((𝑃 ↾ (𝑇𝑈))‘𝑥) ≤ ((𝑃 ↾ (𝑇𝑈))‘𝑡))
13180, 130r19.29a 3291 . 2 ((𝜑 ∧ ¬ (𝑇𝑈) = ∅) → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
13220, 131pm2.61dan 811 1 (𝜑 → ∃𝑑(𝑑 ∈ ℝ+𝑑 < 1 ∧ ∀𝑡 ∈ (𝑇𝑈)𝑑 ≤ (𝑃𝑡)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wnf 1784  wcel 2114  wnfc 2963  wne 3018  wral 3140  wrex 3141  cdif 3935  wss 3938  c0 4293  ifcif 4469   cuni 4840   class class class wbr 5068  ran crn 5558  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   < clt 10677  cle 10678   / cdiv 11299  2c2 11695  +crp 12392  (,)cioo 12741  t crest 16696  topGenctg 16713  Topctop 21503  Clsdccld 21626   Cn ccn 21834  Compccmp 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-cn 21837  df-cnp 21838  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934
This theorem is referenced by:  stoweidlem56  42348
  Copyright terms: Public domain W3C validator