| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcbi | Structured version Visualization version GIF version | ||
| Description: Implication form of sbcbii 3810. sbcbi 44529 is sbcbiVD 44865 without virtual deductions and was automatically derived from sbcbiVD 44865 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbcbi | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbc 3766 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝜓) → [𝐴 / 𝑥](𝜑 ↔ 𝜓))) | |
| 2 | sbcbig 3805 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | |
| 3 | 1, 2 | sylibd 239 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: trsbcVD 44866 sbcssgVD 44872 |
| Copyright terms: Public domain | W3C validator |