![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcbi | Structured version Visualization version GIF version |
Description: Implication form of sbcbii 3718. sbcbi 39582 is sbcbiVD 39929 without virtual deductions and was automatically derived from sbcbiVD 39929 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcbi | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbc 3675 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝜓) → [𝐴 / 𝑥](𝜑 ↔ 𝜓))) | |
2 | sbcbig 3707 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | |
3 | 1, 2 | sylibd 231 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1654 ∈ wcel 2164 [wsbc 3662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-v 3416 df-sbc 3663 |
This theorem is referenced by: trsbcVD 39930 sbcssgVD 39936 |
Copyright terms: Public domain | W3C validator |