Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcim2g Structured version   Visualization version   GIF version

Theorem sbcim2g 44528
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3802. sbcim2g 44528 is sbcim2gVD 44864 without virtual deductions and was automatically derived from sbcim2gVD 44864 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcim2g (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))

Proof of Theorem sbcim2g
StepHypRef Expression
1 sbcimg 3802 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
21biimpd 229 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
3 sbcimg 3802 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
4 imbi2 348 . . . 4 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
54biimpcd 249 . . 3 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒)) → (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
62, 3, 5syl6ci 71 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
7 idd 24 . . . 4 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
8 biimpr 220 . . . 4 (([𝐴 / 𝑥](𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) → [𝐴 / 𝑥](𝜓𝜒)))
93, 7, 8ee13 44494 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥](𝜓𝜒))))
109, 1sylibrd 259 . 2 (𝐴𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓𝜒))))
116, 10impbid 212 1 (𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  [wsbc 3753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754
This theorem is referenced by:  trsbc  44530  trsbcVD  44866
  Copyright terms: Public domain W3C validator