| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcim2g | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3787. sbcim2g 44645 is sbcim2gVD 44981 without virtual deductions and was automatically derived from sbcim2gVD 44981 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbcim2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcimg 3787 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) | |
| 2 | 1 | biimpd 229 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) |
| 3 | sbcimg 3787 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) | |
| 4 | imbi2 348 | . . . 4 ⊢ (([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) | |
| 5 | 4 | biimpcd 249 | . . 3 ⊢ (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) → (([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
| 6 | 2, 3, 5 | syl6ci 71 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
| 7 | idd 24 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) | |
| 8 | biimpr 220 | . . . 4 ⊢ (([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒) → [𝐴 / 𝑥](𝜓 → 𝜒))) | |
| 9 | 3, 7, 8 | ee13 44611 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) |
| 10 | 9, 1 | sylibrd 259 | . 2 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))) |
| 11 | 6, 10 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 [wsbc 3738 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3739 |
| This theorem is referenced by: trsbc 44647 trsbcVD 44983 |
| Copyright terms: Public domain | W3C validator |