![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcim2g | Structured version Visualization version GIF version |
Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg 3856. sbcim2g 44505 is sbcim2gVD 44842 without virtual deductions and was automatically derived from sbcim2gVD 44842 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcim2g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcimg 3856 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) | |
2 | 1 | biimpd 229 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) |
3 | sbcimg 3856 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))) | |
4 | imbi2 348 | . . . 4 ⊢ (([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) | |
5 | 4 | biimpcd 249 | . . 3 ⊢ (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)) → (([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
6 | 2, 3, 5 | syl6ci 71 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
7 | idd 24 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) | |
8 | biimpr 220 | . . . 4 ⊢ (([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → (([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒) → [𝐴 / 𝑥](𝜓 → 𝜒))) | |
9 | 3, 7, 8 | ee13 44471 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))) |
10 | 9, 1 | sylibrd 259 | . 2 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))) |
11 | 6, 10 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: trsbc 44507 trsbcVD 44844 |
Copyright terms: Public domain | W3C validator |