| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcbiVD | Structured version Visualization version GIF version | ||
Description: Implication form of sbcbii 3801.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
sbcbi 44516 is sbcbiVD 44852 without virtual deductions and was automatically
derived from sbcbiVD 44852.
|
| Ref | Expression |
|---|---|
| sbcbiVD | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44551 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
| 2 | idn2 44590 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓) ▶ ∀𝑥(𝜑 ↔ 𝜓) ) | |
| 3 | spsbc 3757 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓) → [𝐴 / 𝑥](𝜑 ↔ 𝜓))) | |
| 4 | 1, 2, 3 | e12 44700 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓) ▶ [𝐴 / 𝑥](𝜑 ↔ 𝜓) ) |
| 5 | sbcbig 3796 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) | |
| 6 | 5 | biimpd 229 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| 7 | 1, 4, 6 | e12 44700 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 , ∀𝑥(𝜑 ↔ 𝜓) ▶ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) ) |
| 8 | 7 | in2 44582 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) ) |
| 9 | 8 | in1 44548 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 df-vd1 44547 df-vd2 44555 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |