Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcbiVD Structured version   Visualization version   GIF version

Theorem sbcbiVD 44151
Description: Implication form of sbcbii 3830. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 43814 is sbcbiVD 44151 without virtual deductions and was automatically derived from sbcbiVD 44151.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   𝑥(𝜑𝜓)   )
3:1,2: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   [𝐴 / 𝑥](𝜑𝜓)   )
4:1,3: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
5:4: (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
qed:5: (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcbiVD (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcbiVD
StepHypRef Expression
1 idn1 43849 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
2 idn2 43888 . . . . 5 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   𝑥(𝜑𝜓)   )
3 spsbc 3783 . . . . 5 (𝐴𝐵 → (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥](𝜑𝜓)))
41, 2, 3e12 43999 . . . 4 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   [𝐴 / 𝑥](𝜑𝜓)   )
5 sbcbig 3824 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
65biimpd 228 . . . 4 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
71, 4, 6e12 43999 . . 3 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
87in2 43880 . 2 (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
98in1 43846 1 (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wcel 2098  [wsbc 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-sbc 3771  df-vd1 43845  df-vd2 43853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator