Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcbiVD Structured version   Visualization version   GIF version

Theorem sbcbiVD 44872
Description: Implication form of sbcbii 3813. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 44536 is sbcbiVD 44872 without virtual deductions and was automatically derived from sbcbiVD 44872.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   𝑥(𝜑𝜓)   )
3:1,2: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   [𝐴 / 𝑥](𝜑𝜓)   )
4:1,3: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
5:4: (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
qed:5: (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcbiVD (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcbiVD
StepHypRef Expression
1 idn1 44571 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
2 idn2 44610 . . . . 5 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   𝑥(𝜑𝜓)   )
3 spsbc 3769 . . . . 5 (𝐴𝐵 → (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥](𝜑𝜓)))
41, 2, 3e12 44720 . . . 4 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   [𝐴 / 𝑥](𝜑𝜓)   )
5 sbcbig 3808 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
65biimpd 229 . . . 4 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
71, 4, 6e12 44720 . . 3 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
87in2 44602 . 2 (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
98in1 44568 1 (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3757  df-vd1 44567  df-vd2 44575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator