Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcbiVD Structured version   Visualization version   GIF version

Theorem sbcbiVD 42385
Description: Implication form of sbcbii 3772. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 42048 is sbcbiVD 42385 without virtual deductions and was automatically derived from sbcbiVD 42385.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   𝑥(𝜑𝜓)   )
3:1,2: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   [𝐴 / 𝑥](𝜑𝜓)   )
4:1,3: (   𝐴𝐵   ,   𝑥(𝜑𝜓)    ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
5:4: (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
qed:5: (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcbiVD (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

Proof of Theorem sbcbiVD
StepHypRef Expression
1 idn1 42083 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
2 idn2 42122 . . . . 5 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   𝑥(𝜑𝜓)   )
3 spsbc 3724 . . . . 5 (𝐴𝐵 → (∀𝑥(𝜑𝜓) → [𝐴 / 𝑥](𝜑𝜓)))
41, 2, 3e12 42233 . . . 4 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   [𝐴 / 𝑥](𝜑𝜓)   )
5 sbcbig 3765 . . . . 5 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
65biimpd 228 . . . 4 (𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
71, 4, 6e12 42233 . . 3 (   𝐴𝐵   ,   𝑥(𝜑𝜓)   ▶   ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)   )
87in2 42114 . 2 (   𝐴𝐵   ▶   (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))   )
98in1 42080 1 (𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712  df-vd1 42079  df-vd2 42087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator