MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb Structured version   Visualization version   GIF version

Theorem sbccsb 4384
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbccsb
StepHypRef Expression
1 abid 2712 . . 3 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
21sbcbii 3796 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥]𝜑)
3 sbcel2 4366 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ 𝑦𝐴 / 𝑥{𝑦𝜑})
42, 3bitr3i 277 1 ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2110  {cab 2708  [wsbc 3739  csb 3848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-nul 4282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator