Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb Structured version   Visualization version   GIF version

Theorem sbccsb 4344
 Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbccsb
StepHypRef Expression
1 abid 2780 . . 3 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
21sbcbii 3778 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥]𝜑)
3 sbcel2 4326 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ 𝑦𝐴 / 𝑥{𝑦𝜑})
42, 3bitr3i 280 1 ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑})
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∈ wcel 2111  {cab 2776  [wsbc 3722  ⦋csb 3830 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-nul 4247 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator