Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbccsb | Structured version Visualization version GIF version |
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbccsb | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2718 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
2 | 1 | sbcbii 3755 | . 2 ⊢ ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
3 | sbcel2 4330 | . 2 ⊢ ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | |
4 | 2, 3 | bitr3i 280 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2110 {cab 2714 [wsbc 3694 ⦋csb 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-nul 4238 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |