| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbccsb | Structured version Visualization version GIF version | ||
| Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbccsb | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2718 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 2 | 1 | sbcbii 3827 | . 2 ⊢ ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 3 | sbcel2 4398 | . 2 ⊢ ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 {cab 2714 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |