MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb Structured version   Visualization version   GIF version

Theorem sbccsb 4367
Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbccsb
StepHypRef Expression
1 abid 2719 . . 3 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
21sbcbii 3776 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ [𝐴 / 𝑥]𝜑)
3 sbcel2 4349 . 2 ([𝐴 / 𝑥]𝑦 ∈ {𝑦𝜑} ↔ 𝑦𝐴 / 𝑥{𝑦𝜑})
42, 3bitr3i 276 1 ([𝐴 / 𝑥]𝜑𝑦𝐴 / 𝑥{𝑦𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  {cab 2715  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator