| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbccsb | Structured version Visualization version GIF version | ||
| Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbccsb | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid 2712 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 2 | 1 | sbcbii 3796 | . 2 ⊢ ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
| 3 | sbcel2 4366 | . 2 ⊢ ([𝐴 / 𝑥]𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) | |
| 4 | 2, 3 | bitr3i 277 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2110 {cab 2708 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-nul 4282 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |