MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb2 Structured version   Visualization version   GIF version

Theorem sbccsb2 4426
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb2 ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑})

Proof of Theorem sbccsb2
StepHypRef Expression
1 sbcex 3779 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 elex 3485 . 2 (𝐴𝐴 / 𝑥{𝑥𝜑} → 𝐴 ∈ V)
3 abid 2705 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43sbcbii 3829 . . 3 ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ [𝐴 / 𝑥]𝜑)
5 sbcel12 4400 . . . 4 ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑})
6 csbvarg 4423 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
76eleq1d 2810 . . . 4 (𝐴 ∈ V → (𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
85, 7bitrid 283 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
94, 8bitr3id 285 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))
101, 2, 9pm5.21nii 378 1 ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  {cab 2701  Vcvv 3466  [wsbc 3769  csb 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-nul 4315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator