![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbccsb2 | Structured version Visualization version GIF version |
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbccsb2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3814 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | elex 3509 | . 2 ⊢ (𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
3 | abid 2721 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
4 | 3 | sbcbii 3865 | . . 3 ⊢ ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) |
5 | sbcel12 4434 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) | |
6 | csbvarg 4457 | . . . . 5 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
7 | 6 | eleq1d 2829 | . . . 4 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
8 | 5, 7 | bitrid 283 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
9 | 4, 8 | bitr3id 285 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) |
10 | 1, 2, 9 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 {cab 2717 Vcvv 3488 [wsbc 3804 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-nul 4353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |