MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb2 Structured version   Visualization version   GIF version

Theorem sbccsb2 4443
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb2 ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑})

Proof of Theorem sbccsb2
StepHypRef Expression
1 sbcex 3801 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 elex 3499 . 2 (𝐴𝐴 / 𝑥{𝑥𝜑} → 𝐴 ∈ V)
3 abid 2716 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43sbcbii 3852 . . 3 ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ [𝐴 / 𝑥]𝜑)
5 sbcel12 4417 . . . 4 ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑})
6 csbvarg 4440 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
76eleq1d 2824 . . . 4 (𝐴 ∈ V → (𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
85, 7bitrid 283 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
94, 8bitr3id 285 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))
101, 2, 9pm5.21nii 378 1 ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2106  {cab 2712  Vcvv 3478  [wsbc 3791  csb 3908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-nul 4340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator