|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbccsb2 | Structured version Visualization version GIF version | ||
| Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| sbccsb2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcex 3798 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | elex 3501 | . 2 ⊢ (𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑} → 𝐴 ∈ V) | |
| 3 | abid 2718 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 4 | 3 | sbcbii 3846 | . . 3 ⊢ ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑) | 
| 5 | sbcel12 4411 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) | |
| 6 | csbvarg 4434 | . . . . 5 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 7 | 6 | eleq1d 2826 | . . . 4 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝑥 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) | 
| 8 | 5, 7 | bitrid 283 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) | 
| 9 | 4, 8 | bitr3id 285 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) | 
| 10 | 1, 2, 9 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∈ wcel 2108 {cab 2714 Vcvv 3480 [wsbc 3788 ⦋csb 3899 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-nul 4334 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |