MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccsb2 Structured version   Visualization version   GIF version

Theorem sbccsb2 4390
Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbccsb2 ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑})

Proof of Theorem sbccsb2
StepHypRef Expression
1 sbcex 3786 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
2 elex 3518 . 2 (𝐴𝐴 / 𝑥{𝑥𝜑} → 𝐴 ∈ V)
3 abid 2808 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43sbcbii 3833 . . 3 ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ [𝐴 / 𝑥]𝜑)
5 sbcel12 4364 . . . 4 ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑})
6 csbvarg 4387 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
76eleq1d 2902 . . . 4 (𝐴 ∈ V → (𝐴 / 𝑥𝑥𝐴 / 𝑥{𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
85, 7syl5bb 284 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥 ∈ {𝑥𝜑} ↔ 𝐴𝐴 / 𝑥{𝑥𝜑}))
94, 8syl5bbr 286 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑}))
101, 2, 9pm5.21nii 380 1 ([𝐴 / 𝑥]𝜑𝐴𝐴 / 𝑥{𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 207  wcel 2107  {cab 2804  Vcvv 3500  [wsbc 3776  csb 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-nul 4296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator