Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbvargi | Structured version Visualization version GIF version |
Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4362. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
csbvargi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
csbvargi | ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbvargi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbvarg 4362 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: sbcop 5397 iuninc 30801 f1od2 30958 bnj110 32738 finxpreclem4 35492 brtrclfv2 41224 onfrALTlem4VD 42395 eubrdm 44417 |
Copyright terms: Public domain | W3C validator |