| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbvargi | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4379. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| csbvargi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| csbvargi | ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbvargi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbvarg 4379 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⦋csb 3845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 df-csb 3846 |
| This theorem is referenced by: sbcop 5424 iuninc 32532 f1od2 32694 bnj110 34862 finxpreclem4 37428 brtrclfv2 43760 onfrALTlem4VD 44918 eubrdm 47067 |
| Copyright terms: Public domain | W3C validator |