MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvargi Structured version   Visualization version   GIF version

Theorem csbvargi 4393
Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4392. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypothesis
Ref Expression
csbvargi.1 𝐴 ∈ V
Assertion
Ref Expression
csbvargi 𝐴 / 𝑥𝑥 = 𝐴

Proof of Theorem csbvargi
StepHypRef Expression
1 csbvargi.1 . 2 𝐴 ∈ V
2 csbvarg 4392 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
31, 2ax-mp 5 1 𝐴 / 𝑥𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3444  csb 3856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3446  df-sbc 3741  df-csb 3857
This theorem is referenced by:  sbcop  5447  iuninc  31525  f1od2  31685  bnj110  33527  finxpreclem4  35911  brtrclfv2  42087  onfrALTlem4VD  43256  eubrdm  45356
  Copyright terms: Public domain W3C validator