| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbvargi | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4397. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| csbvargi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| csbvargi | ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbvargi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbvarg 4397 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: sbcop 5449 iuninc 32489 f1od2 32644 bnj110 34848 finxpreclem4 37382 brtrclfv2 43716 onfrALTlem4VD 44875 eubrdm 47037 |
| Copyright terms: Public domain | W3C validator |