|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > csbvargi | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4434. (Contributed by Giovanni Mascellani, 30-May-2019.) | 
| Ref | Expression | 
|---|---|
| csbvargi.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| csbvargi | ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbvargi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbvarg 4434 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⦋csb 3899 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-sbc 3789 df-csb 3900 | 
| This theorem is referenced by: sbcop 5494 iuninc 32573 f1od2 32732 bnj110 34872 finxpreclem4 37395 brtrclfv2 43740 onfrALTlem4VD 44906 eubrdm 47048 | 
| Copyright terms: Public domain | W3C validator |