Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbvargi | Structured version Visualization version GIF version |
Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4318. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
csbvargi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
csbvargi | ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbvargi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbvarg 4318 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2113 Vcvv 3397 ⦋csb 3788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3399 df-sbc 3680 df-csb 3789 |
This theorem is referenced by: sbcop 5343 iuninc 30466 f1od2 30623 bnj110 32401 finxpreclem4 35177 brtrclfv2 40865 onfrALTlem4VD 42028 eubrdm 44053 |
Copyright terms: Public domain | W3C validator |