![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbvargi | Structured version Visualization version GIF version |
Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4457. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
csbvargi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
csbvargi | ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbvargi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbvarg 4457 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: sbcop 5509 iuninc 32583 f1od2 32735 bnj110 34834 finxpreclem4 37360 brtrclfv2 43689 onfrALTlem4VD 44857 eubrdm 46951 |
Copyright terms: Public domain | W3C validator |