MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbvargi Structured version   Visualization version   GIF version

Theorem csbvargi 4366
Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg 4365. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypothesis
Ref Expression
csbvargi.1 𝐴 ∈ V
Assertion
Ref Expression
csbvargi 𝐴 / 𝑥𝑥 = 𝐴

Proof of Theorem csbvargi
StepHypRef Expression
1 csbvargi.1 . 2 𝐴 ∈ V
2 csbvarg 4365 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑥 = 𝐴)
31, 2ax-mp 5 1 𝐴 / 𝑥𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-sbc 3717  df-csb 3833
This theorem is referenced by:  sbcop  5403  iuninc  30900  f1od2  31056  bnj110  32838  finxpreclem4  35565  brtrclfv2  41335  onfrALTlem4VD  42506  eubrdm  44530
  Copyright terms: Public domain W3C validator