MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestgw Structured version   Visualization version   GIF version

Theorem sbcnestgw 4351
Description: Nest the composition of two substitutions. Version of sbcnestg 4356 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 27-Nov-2005.) (Revised by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
sbcnestgw (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcnestgw
StepHypRef Expression
1 nfv 1918 . . 3 𝑥𝜑
21ax-gen 1799 . 2 𝑦𝑥𝜑
3 sbcnestgfw 4349 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3mpan2 687 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787  wcel 2108  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829
This theorem is referenced by:  sbcco3gw  4353  sbcop  5397
  Copyright terms: Public domain W3C validator