| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcnestgw | Structured version Visualization version GIF version | ||
| Description: Nest the composition of two substitutions. Version of sbcnestg 4408 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 27-Nov-2005.) Avoid ax-13 2375. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| sbcnestgw | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | ax-gen 1794 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝜑 |
| 3 | sbcnestgfw 4401 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
| 4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 ∈ wcel 2107 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3465 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: sbcco3gw 4405 sbcop 5474 |
| Copyright terms: Public domain | W3C validator |