MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestgw Structured version   Visualization version   GIF version

Theorem sbcnestgw 4415
Description: Nest the composition of two substitutions. Version of sbcnestg 4420 with a disjoint variable condition, which does not require ax-13 2365. (Contributed by NM, 27-Nov-2005.) Avoid ax-13 2365. (Revised by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
sbcnestgw (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcnestgw
StepHypRef Expression
1 nfv 1909 . . 3 𝑥𝜑
21ax-gen 1789 . 2 𝑦𝑥𝜑
3 sbcnestgfw 4413 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3mpan2 688 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  wnf 1777  wcel 2098  [wsbc 3772  csb 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-v 3470  df-sbc 3773  df-csb 3889
This theorem is referenced by:  sbcco3gw  4417  sbcop  5482
  Copyright terms: Public domain W3C validator