Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcnestgw | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. Version of sbcnestg 4356 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 27-Nov-2005.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
sbcnestgw | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | ax-gen 1799 | . 2 ⊢ ∀𝑦Ⅎ𝑥𝜑 |
3 | sbcnestgfw 4349 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | |
4 | 2, 3 | mpan2 687 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 ∈ wcel 2108 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: sbcco3gw 4353 sbcop 5397 |
Copyright terms: Public domain | W3C validator |