MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestgw Structured version   Visualization version   GIF version

Theorem sbcnestgw 4381
Description: Nest the composition of two substitutions. Version of sbcnestg 4386 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 27-Nov-2005.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.)
Assertion
Ref Expression
sbcnestgw (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcnestgw
StepHypRef Expression
1 nfv 1918 . . 3 𝑥𝜑
21ax-gen 1798 . 2 𝑦𝑥𝜑
3 sbcnestgfw 4379 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3mpan2 690 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540  wnf 1786  wcel 2107  [wsbc 3740  csb 3856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-v 3446  df-sbc 3741  df-csb 3857
This theorem is referenced by:  sbcco3gw  4383  sbcop  5447
  Copyright terms: Public domain W3C validator