MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestgw Structured version   Visualization version   GIF version

Theorem sbcnestgw 4370
Description: Nest the composition of two substitutions. Version of sbcnestg 4375 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 27-Nov-2005.) Avoid ax-13 2372. (Revised by GG, 26-Jan-2024.)
Assertion
Ref Expression
sbcnestgw (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcnestgw
StepHypRef Expression
1 nfv 1915 . . 3 𝑥𝜑
21ax-gen 1796 . 2 𝑦𝑥𝜑
3 sbcnestgfw 4368 . 2 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
42, 3mpan2 691 1 (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wnf 1784  wcel 2111  [wsbc 3736  csb 3845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-sbc 3737  df-csb 3846
This theorem is referenced by:  sbcco3gw  4372  sbcop  5427
  Copyright terms: Public domain W3C validator