MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnestgf Structured version   Visualization version   GIF version

Theorem sbcnestgf 4389
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker sbcnestgfw 4384 when possible. (Contributed by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.)
Assertion
Ref Expression
sbcnestgf ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))

Proof of Theorem sbcnestgf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3755 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑))
2 csbeq1 3865 . . . . . 6 (𝑧 = 𝐴𝑧 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
32sbceq1d 3758 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
41, 3bibi12d 345 . . . 4 (𝑧 = 𝐴 → (([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑) ↔ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
54imbi2d 340 . . 3 (𝑧 = 𝐴 → ((∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑)) ↔ (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))))
6 vex 3451 . . . . 5 𝑧 ∈ V
76a1i 11 . . . 4 (∀𝑦𝑥𝜑𝑧 ∈ V)
8 csbeq1a 3876 . . . . . 6 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
98sbceq1d 3758 . . . . 5 (𝑥 = 𝑧 → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
109adantl 481 . . . 4 ((∀𝑦𝑥𝜑𝑥 = 𝑧) → ([𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
11 nfnf1 2155 . . . . 5 𝑥𝑥𝜑
1211nfal 2322 . . . 4 𝑥𝑦𝑥𝜑
13 nfa1 2152 . . . . 5 𝑦𝑦𝑥𝜑
14 nfcsb1v 3886 . . . . . 6 𝑥𝑧 / 𝑥𝐵
1514a1i 11 . . . . 5 (∀𝑦𝑥𝜑𝑥𝑧 / 𝑥𝐵)
16 sp 2184 . . . . 5 (∀𝑦𝑥𝜑 → Ⅎ𝑥𝜑)
1713, 15, 16nfsbcd 3777 . . . 4 (∀𝑦𝑥𝜑 → Ⅎ𝑥[𝑧 / 𝑥𝐵 / 𝑦]𝜑)
187, 10, 12, 17sbciedf 3796 . . 3 (∀𝑦𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑[𝑧 / 𝑥𝐵 / 𝑦]𝜑))
195, 18vtoclg 3520 . 2 (𝐴𝑉 → (∀𝑦𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑)))
2019imp 406 1 ((𝐴𝑉 ∧ ∀𝑦𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  Vcvv 3447  [wsbc 3753  csb 3862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2370  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3449  df-sbc 3754  df-csb 3863
This theorem is referenced by:  csbnestgf  4390  sbcnestg  4391
  Copyright terms: Public domain W3C validator