Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcnestgf | Structured version Visualization version GIF version |
Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker sbcnestgfw 4349 when possible. (Contributed by Mario Carneiro, 11-Nov-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbcnestgf | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3713 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)) | |
2 | csbeq1 3831 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
3 | 2 | sbceq1d 3716 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
4 | 1, 3 | bibi12d 345 | . . . 4 ⊢ (𝑧 = 𝐴 → (([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑) ↔ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑))) |
5 | 4 | imbi2d 340 | . . 3 ⊢ (𝑧 = 𝐴 → ((∀𝑦Ⅎ𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) ↔ (∀𝑦Ⅎ𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)))) |
6 | vex 3426 | . . . . 5 ⊢ 𝑧 ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → 𝑧 ∈ V) |
8 | csbeq1a 3842 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
9 | 8 | sbceq1d 3716 | . . . . 5 ⊢ (𝑥 = 𝑧 → ([𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((∀𝑦Ⅎ𝑥𝜑 ∧ 𝑥 = 𝑧) → ([𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
11 | nfnf1 2153 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | |
12 | 11 | nfal 2321 | . . . 4 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥𝜑 |
13 | nfa1 2150 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦Ⅎ𝑥𝜑 | |
14 | nfcsb1v 3853 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵) |
16 | sp 2178 | . . . . 5 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
17 | 13, 15, 16 | nfsbcd 3735 | . . . 4 ⊢ (∀𝑦Ⅎ𝑥𝜑 → Ⅎ𝑥[⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑) |
18 | 7, 10, 12, 17 | sbciedf 3755 | . . 3 ⊢ (∀𝑦Ⅎ𝑥𝜑 → ([𝑧 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝑧 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
19 | 5, 18 | vtoclg 3495 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑦Ⅎ𝑥𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑))) |
20 | 19 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 Vcvv 3422 [wsbc 3711 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-v 3424 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbnestgf 4355 sbcnestg 4356 |
Copyright terms: Public domain | W3C validator |