MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difopab Structured version   Visualization version   GIF version

Theorem difopab 5791
Description: Difference of two ordered-pair class abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Proof shortened by SN, 19-Dec-2024.)
Assertion
Ref Expression
difopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem difopab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5782 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 reldif 5776 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
31, 2ax-mp 5 . 2 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
4 relopabv 5782 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
5 sban 2084 . . . 4 ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦] ¬ 𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
6 sban 2084 . . . . 5 ([𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ ([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦] ¬ 𝜓))
76sbbii 2080 . . . 4 ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑 ∧ [𝑤 / 𝑦] ¬ 𝜓))
8 vopelopabsb 5491 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
9 sbn 2277 . . . . . 6 ([𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓 ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
10 sbn 2277 . . . . . . 7 ([𝑤 / 𝑦] ¬ 𝜓 ↔ ¬ [𝑤 / 𝑦]𝜓)
1110sbbii 2080 . . . . . 6 ([𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓 ↔ [𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓)
12 vopelopabsb 5491 . . . . . . 7 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
1312notbii 320 . . . . . 6 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
149, 11, 133bitr4ri 304 . . . . 5 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓)
158, 14anbi12i 628 . . . 4 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
165, 7, 153bitr4ri 304 . . 3 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
17 eldif 3925 . . 3 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
18 vopelopabsb 5491 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
1916, 17, 183bitr4i 303 . 2 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)})
203, 4, 19eqrelriiv 5751 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1542  [wsb 2068  wcel 2107  cdif 3912  cop 4597  {copab 5172  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5173  df-xp 5644  df-rel 5645
This theorem is referenced by:  dfnelbr2  45579
  Copyright terms: Public domain W3C validator