MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difopab Structured version   Visualization version   GIF version

Theorem difopab 5455
Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
difopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem difopab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5449 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 reldif 5440 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
31, 2ax-mp 5 . 2 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
4 relopab 5449 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
5 sbcan 3676 . . . 4 ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
6 sbcan 3676 . . . . 5 ([𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ ([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓))
76sbcbii 3689 . . . 4 ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓))
8 opelopabsb 5180 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
9 vex 3394 . . . . . . 7 𝑧 ∈ V
10 sbcng 3674 . . . . . . 7 (𝑧 ∈ V → ([𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓 ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓))
119, 10ax-mp 5 . . . . . 6 ([𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓 ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
12 vex 3394 . . . . . . . 8 𝑤 ∈ V
13 sbcng 3674 . . . . . . . 8 (𝑤 ∈ V → ([𝑤 / 𝑦] ¬ 𝜓 ↔ ¬ [𝑤 / 𝑦]𝜓))
1412, 13ax-mp 5 . . . . . . 7 ([𝑤 / 𝑦] ¬ 𝜓 ↔ ¬ [𝑤 / 𝑦]𝜓)
1514sbcbii 3689 . . . . . 6 ([𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓[𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓)
16 opelopabsb 5180 . . . . . . 7 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
1716notbii 311 . . . . . 6 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
1811, 15, 173bitr4ri 295 . . . . 5 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓)
198, 18anbi12i 614 . . . 4 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
205, 7, 193bitr4ri 295 . . 3 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
21 eldif 3779 . . 3 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
22 opelopabsb 5180 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
2320, 21, 223bitr4i 294 . 2 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)})
243, 4, 23eqrelriiv 5416 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197  wa 384   = wceq 1637  wcel 2156  Vcvv 3391  [wsbc 3633  cdif 3766  cop 4376  {copab 4906  Rel wrel 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-op 4377  df-opab 4907  df-xp 5317  df-rel 5318
This theorem is referenced by:  dfnelbr2  41856
  Copyright terms: Public domain W3C validator