Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segletr Structured version   Visualization version   GIF version

Theorem segletr 35074
Description: Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
segletr ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩ Seg≀ ⟨𝐸, 𝐹⟩) β†’ ⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐸, 𝐹⟩))

Proof of Theorem segletr
Dummy variables 𝑦 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprll 777 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ 𝑦 Btwn ⟨𝐢, 𝐷⟩)
2 simprrr 780 . . . . . . 7 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)
31, 2jca 512 . . . . . 6 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ (𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))
4 simpl1 1191 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ 𝑁 ∈ β„•)
5 simpl23 1253 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
6 simprl 769 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
7 simpl31 1254 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ 𝐷 ∈ (π”Όβ€˜π‘))
8 simpl32 1255 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
9 simprr 771 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
10 cgrxfr 35015 . . . . . . . 8 ((𝑁 ∈ β„• ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©)))
114, 5, 6, 7, 8, 9, 10syl132anc 1388 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©)))
1211adantr 481 . . . . . 6 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©)))
133, 12mpd 15 . . . . 5 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©))
14 anass 469 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ 𝑀 ∈ (π”Όβ€˜π‘)) ↔ ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) ∧ 𝑀 ∈ (π”Όβ€˜π‘))))
15 df-3an 1089 . . . . . . . . . 10 ((𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘)) ↔ ((𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) ∧ 𝑀 ∈ (π”Όβ€˜π‘)))
1615anbi2i 623 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ↔ ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) ∧ 𝑀 ∈ (π”Όβ€˜π‘))))
1714, 16bitr4i 277 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ 𝑀 ∈ (π”Όβ€˜π‘)) ↔ ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))))
18 simpl1 1191 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝑁 ∈ β„•)
19 simpl23 1253 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
20 simpr1 1194 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝑦 ∈ (π”Όβ€˜π‘))
21 simpl31 1254 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝐷 ∈ (π”Όβ€˜π‘))
22 simpl32 1255 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
23 simpr3 1196 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝑀 ∈ (π”Όβ€˜π‘))
24 simpr2 1195 . . . . . . . . . . . 12 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝑧 ∈ (π”Όβ€˜π‘))
25 brcgr3 35006 . . . . . . . . . . . 12 ((𝑁 ∈ β„• ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ© ↔ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1393 . . . . . . . . . . 11 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ© ↔ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))
2726anbi2d 629 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ ((𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©) ↔ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©))))
2827adantr 481 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ ((𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©) ↔ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©))))
29 df-3an 1089 . . . . . . . . . . 11 (((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©))) ↔ (((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©))))
30 simpl33 1256 . . . . . . . . . . . . 13 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝐹 ∈ (π”Όβ€˜π‘))
31 simpr3l 1234 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ 𝑀 Btwn ⟨𝐸, π‘§βŸ©)
32 simpr2l 1232 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ 𝑧 Btwn ⟨𝐸, 𝐹⟩)
3318, 22, 23, 24, 30, 31, 32btwnexchand 34986 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ 𝑀 Btwn ⟨𝐸, 𝐹⟩)
34 simpl21 1251 . . . . . . . . . . . . 13 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
35 simpl22 1252 . . . . . . . . . . . . 13 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
36 simpr1r 1231 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©)
37 simp3r1 1281 . . . . . . . . . . . . . 14 (((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©))) β†’ ⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ©)
3837adantl 482 . . . . . . . . . . . . 13 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ ⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ©)
3918, 34, 35, 19, 20, 22, 23, 36, 38cgrtrand 34953 . . . . . . . . . . . 12 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)
4033, 39jca 512 . . . . . . . . . . 11 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ (𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©))
4129, 40sylan2br 595 . . . . . . . . . 10 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ (((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)) ∧ (𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)))) β†’ (𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©))
4241expr 457 . . . . . . . . 9 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ ((𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ (⟨𝐢, π‘¦βŸ©Cgr⟨𝐸, π‘€βŸ© ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ© ∧ βŸ¨π‘¦, 𝐷⟩CgrβŸ¨π‘€, π‘§βŸ©)) β†’ (𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
4328, 42sylbid 239 . . . . . . . 8 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘) ∧ 𝑀 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ ((𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©) β†’ (𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
4417, 43sylanb 581 . . . . . . 7 (((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ 𝑀 ∈ (π”Όβ€˜π‘)) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ ((𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©) β†’ (𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
4544an32s 650 . . . . . 6 (((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) ∧ 𝑀 ∈ (π”Όβ€˜π‘)) β†’ ((𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©) β†’ (𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
4645reximdva 3168 . . . . 5 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ (βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, π‘§βŸ© ∧ ⟨𝐢, βŸ¨π‘¦, 𝐷⟩⟩Cgr3⟨𝐸, βŸ¨π‘€, π‘§βŸ©βŸ©) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
4713, 46mpd 15 . . . 4 ((((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) ∧ (𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘))) ∧ ((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©))
4847exp31 420 . . 3 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((𝑦 ∈ (π”Όβ€˜π‘) ∧ 𝑧 ∈ (π”Όβ€˜π‘)) β†’ (((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©))))
4948rexlimdvv 3210 . 2 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)βˆƒπ‘§ ∈ (π”Όβ€˜π‘)((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)) β†’ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
50 simp1 1136 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 𝑁 ∈ β„•)
51 simp21 1206 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
52 simp22 1207 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
53 simp23 1208 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
54 simp31 1209 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 𝐷 ∈ (π”Όβ€˜π‘))
55 brsegle 35068 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐢, 𝐷⟩ ↔ βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©)))
5650, 51, 52, 53, 54, 55syl122anc 1379 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐢, 𝐷⟩ ↔ βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©)))
57 simp32 1210 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 𝐸 ∈ (π”Όβ€˜π‘))
58 simp33 1211 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ 𝐹 ∈ (π”Όβ€˜π‘))
59 brsegle 35068 . . . . 5 ((𝑁 ∈ β„• ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝐷 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐢, 𝐷⟩ Seg≀ ⟨𝐸, 𝐹⟩ ↔ βˆƒπ‘§ ∈ (π”Όβ€˜π‘)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)))
6050, 53, 54, 57, 58, 59syl122anc 1379 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐢, 𝐷⟩ Seg≀ ⟨𝐸, 𝐹⟩ ↔ βˆƒπ‘§ ∈ (π”Όβ€˜π‘)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)))
6156, 60anbi12d 631 . . 3 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩ Seg≀ ⟨𝐸, 𝐹⟩) ↔ (βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ βˆƒπ‘§ ∈ (π”Όβ€˜π‘)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))))
62 reeanv 3226 . . 3 (βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)βˆƒπ‘§ ∈ (π”Όβ€˜π‘)((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)) ↔ (βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)(𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ βˆƒπ‘§ ∈ (π”Όβ€˜π‘)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©)))
6361, 62bitr4di 288 . 2 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩ Seg≀ ⟨𝐸, 𝐹⟩) ↔ βˆƒπ‘¦ ∈ (π”Όβ€˜π‘)βˆƒπ‘§ ∈ (π”Όβ€˜π‘)((𝑦 Btwn ⟨𝐢, 𝐷⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐢, π‘¦βŸ©) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐢, 𝐷⟩Cgr⟨𝐸, π‘§βŸ©))))
64 brsegle 35068 . . 3 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐸, 𝐹⟩ ↔ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
6550, 51, 52, 57, 58, 64syl122anc 1379 . 2 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ (⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐸, 𝐹⟩ ↔ βˆƒπ‘€ ∈ (π”Όβ€˜π‘)(𝑀 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐡⟩Cgr⟨𝐸, π‘€βŸ©)))
6649, 63, 653imtr4d 293 1 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘)) ∧ (𝐷 ∈ (π”Όβ€˜π‘) ∧ 𝐸 ∈ (π”Όβ€˜π‘) ∧ 𝐹 ∈ (π”Όβ€˜π‘))) β†’ ((⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐢, 𝐷⟩ ∧ ⟨𝐢, 𝐷⟩ Seg≀ ⟨𝐸, 𝐹⟩) β†’ ⟨𝐴, 𝐡⟩ Seg≀ ⟨𝐸, 𝐹⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   ∈ wcel 2106  βˆƒwrex 3070  βŸ¨cop 4633   class class class wbr 5147  β€˜cfv 6540  β„•cn 12208  π”Όcee 28135   Btwn cbtwn 28136  Cgrccgr 28137  Cgr3ccgr3 34996   Seg≀ csegle 35066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-ee 28138  df-btwn 28139  df-cgr 28140  df-ofs 34943  df-cgr3 35001  df-segle 35067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator