Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segletr Structured version   Visualization version   GIF version

Theorem segletr 34343
Description: Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
segletr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) → ⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩))

Proof of Theorem segletr
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprll 775 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
2 simprrr 778 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)
31, 2jca 511 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))
4 simpl1 1189 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
5 simpl23 1251 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
6 simprl 767 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
7 simpl31 1252 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
8 simpl32 1253 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
9 simprr 769 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑧 ∈ (𝔼‘𝑁))
10 cgrxfr 34284 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩)))
114, 5, 6, 7, 8, 9, 10syl132anc 1386 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩)))
1211adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩)))
133, 12mpd 15 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩))
14 anass 468 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ 𝑤 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ 𝑤 ∈ (𝔼‘𝑁))))
15 df-3an 1087 . . . . . . . . . 10 ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁)) ↔ ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ 𝑤 ∈ (𝔼‘𝑁)))
1615anbi2i 622 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ 𝑤 ∈ (𝔼‘𝑁))))
1714, 16bitr4i 277 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ 𝑤 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))))
18 simpl1 1189 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
19 simpl23 1251 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
20 simpr1 1192 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
21 simpl31 1252 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
22 simpl32 1253 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
23 simpr3 1194 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑤 ∈ (𝔼‘𝑁))
24 simpr2 1193 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑧 ∈ (𝔼‘𝑁))
25 brcgr3 34275 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1391 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))
2726anbi2d 628 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) ↔ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))))
2827adantr 480 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) ↔ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))))
29 df-3an 1087 . . . . . . . . . . 11 (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))) ↔ (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))))
30 simpl33 1254 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
31 simpr3l 1232 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → 𝑤 Btwn ⟨𝐸, 𝑧⟩)
32 simpr2l 1230 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → 𝑧 Btwn ⟨𝐸, 𝐹⟩)
3318, 22, 23, 24, 30, 31, 32btwnexchand 34255 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → 𝑤 Btwn ⟨𝐸, 𝐹⟩)
34 simpl21 1249 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
35 simpl22 1250 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
36 simpr1r 1229 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
37 simp3r1 1279 . . . . . . . . . . . . . 14 (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))) → ⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩)
3837adantl 481 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → ⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩)
3918, 34, 35, 19, 20, 22, 23, 36, 38cgrtrand 34222 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)
4033, 39jca 511 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))
4129, 40sylan2br 594 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))
4241expr 456 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4328, 42sylbid 239 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4417, 43sylanb 580 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ 𝑤 ∈ (𝔼‘𝑁)) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4544an32s 648 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) ∧ 𝑤 ∈ (𝔼‘𝑁)) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4645reximdva 3202 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → (∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4713, 46mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))
4847exp31 419 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))))
4948rexlimdvv 3221 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
50 simp1 1134 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
51 simp21 1204 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
52 simp22 1205 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
53 simp23 1206 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
54 simp31 1207 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
55 brsegle 34337 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
5650, 51, 52, 53, 54, 55syl122anc 1377 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
57 simp32 1208 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
58 simp33 1209 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
59 brsegle 34337 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)))
6050, 53, 54, 57, 58, 59syl122anc 1377 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)))
6156, 60anbi12d 630 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))))
62 reeanv 3292 . . 3 (∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)))
6361, 62bitr4di 288 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))))
64 brsegle 34337 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
6550, 51, 52, 57, 58, 64syl122anc 1377 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
6649, 63, 653imtr4d 293 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) → ⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wrex 3064  cop 4564   class class class wbr 5070  cfv 6418  cn 11903  𝔼cee 27159   Btwn cbtwn 27160  Cgrccgr 27161  Cgr3ccgr3 34265   Seg csegle 34335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-ee 27162  df-btwn 27163  df-cgr 27164  df-ofs 34212  df-cgr3 34270  df-segle 34336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator