Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segletr Structured version   Visualization version   GIF version

Theorem segletr 32597
Description: Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
segletr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) → ⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩))

Proof of Theorem segletr
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprll 797 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
2 simprrr 800 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)
31, 2jca 507 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))
4 simpl1 1242 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
5 simpl23 1339 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
6 simprl 787 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
7 simpl31 1341 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
8 simpl32 1343 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
9 simprr 789 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → 𝑧 ∈ (𝔼‘𝑁))
10 cgrxfr 32538 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩)))
114, 5, 6, 7, 8, 9, 10syl132anc 1507 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩)))
1211adantr 472 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩)))
133, 12mpd 15 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩))
14 anass 460 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ 𝑤 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ 𝑤 ∈ (𝔼‘𝑁))))
15 df-3an 1109 . . . . . . . . . 10 ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁)) ↔ ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ 𝑤 ∈ (𝔼‘𝑁)))
1615anbi2i 616 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) ∧ 𝑤 ∈ (𝔼‘𝑁))))
1714, 16bitr4i 269 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ 𝑤 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))))
18 simpl1 1242 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
19 simpl23 1339 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
20 simpr1 1248 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
21 simpl31 1341 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
22 simpl32 1343 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
23 simpr3 1252 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑤 ∈ (𝔼‘𝑁))
24 simpr2 1250 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝑧 ∈ (𝔼‘𝑁))
25 brcgr3 32529 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))
2618, 19, 20, 21, 22, 23, 24, 25syl133anc 1512 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))
2726anbi2d 622 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) ↔ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))))
2827adantr 472 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) ↔ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))))
29 df-3an 1109 . . . . . . . . . . 11 (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))) ↔ (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))))
30 simpl33 1345 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
31 simpr3l 1313 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → 𝑤 Btwn ⟨𝐸, 𝑧⟩)
32 simpr2l 1309 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → 𝑧 Btwn ⟨𝐸, 𝐹⟩)
3318, 22, 23, 24, 30, 31, 32btwnexchand 32509 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → 𝑤 Btwn ⟨𝐸, 𝐹⟩)
34 simpl21 1335 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
35 simpl22 1337 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
36 simpr1r 1307 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
37 simp3r1 1380 . . . . . . . . . . . . . 14 (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩))) → ⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩)
3837adantl 473 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → ⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩)
3918, 34, 35, 19, 20, 22, 23, 36, 38cgrtrand 32476 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)
4033, 39jca 507 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))
4129, 40sylan2br 588 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) ∧ (𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)))) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))
4241expr 448 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐸, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝑤, 𝑧⟩)) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4328, 42sylbid 231 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁) ∧ 𝑤 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4417, 43sylanb 576 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ 𝑤 ∈ (𝔼‘𝑁)) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4544an32s 642 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) ∧ 𝑤 ∈ (𝔼‘𝑁)) → ((𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → (𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4645reximdva 3163 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → (∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝑧⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐸, ⟨𝑤, 𝑧⟩⟩) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
4713, 46mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))
4847exp31 410 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑧 ∈ (𝔼‘𝑁)) → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩))))
4948rexlimdvv 3184 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) → ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
50 simp1 1166 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
51 simp21 1263 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
52 simp22 1264 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
53 simp23 1265 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
54 simp31 1266 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
55 brsegle 32591 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
5650, 51, 52, 53, 54, 55syl122anc 1498 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
57 simp32 1267 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
58 simp33 1268 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
59 brsegle 32591 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)))
6050, 53, 54, 57, 58, 59syl122anc 1498 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)))
6156, 60anbi12d 624 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))))
62 reeanv 3254 . . 3 (∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑧 ∈ (𝔼‘𝑁)(𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩)))
6361, 62syl6bbr 280 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑧 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝑧 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐸, 𝑧⟩))))
64 brsegle 32591 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
6550, 51, 52, 57, 58, 64syl122anc 1498 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩ ↔ ∃𝑤 ∈ (𝔼‘𝑁)(𝑤 Btwn ⟨𝐸, 𝐹⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐸, 𝑤⟩)))
6649, 63, 653imtr4d 285 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐸, 𝐹⟩) → ⟨𝐴, 𝐵⟩ Seg𝐸, 𝐹⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107  wcel 2155  wrex 3056  cop 4340   class class class wbr 4809  cfv 6068  cn 11274  𝔼cee 26059   Btwn cbtwn 26060  Cgrccgr 26061  Cgr3ccgr3 32519   Seg csegle 32589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704  df-ee 26062  df-btwn 26063  df-cgr 26064  df-ofs 32466  df-cgr3 32524  df-segle 32590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator