MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsssn Structured version   Visualization version   GIF version

Theorem snsssn 4790
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
snsssn ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)

Proof of Theorem snsssn
StepHypRef Expression
1 sssn 4775 . 2 ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵}))
2 sneqr.1 . . . . . 6 𝐴 ∈ V
32snnz 4726 . . . . 5 {𝐴} ≠ ∅
43neii 2930 . . . 4 ¬ {𝐴} = ∅
54pm2.21i 119 . . 3 ({𝐴} = ∅ → 𝐴 = 𝐵)
62sneqr 4789 . . 3 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
75, 6jaoi 857 . 2 (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵)
81, 7sylbi 217 1 ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  c0 4280  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4281  df-sn 4574
This theorem is referenced by:  k0004lem3  44252
  Copyright terms: Public domain W3C validator