MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsssn Structured version   Visualization version   GIF version

Theorem snsssn 4732
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
snsssn ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)

Proof of Theorem snsssn
StepHypRef Expression
1 sssn 4719 . 2 ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵}))
2 sneqr.1 . . . . . 6 𝐴 ∈ V
32snnz 4672 . . . . 5 {𝐴} ≠ ∅
43neii 2989 . . . 4 ¬ {𝐴} = ∅
54pm2.21i 119 . . 3 ({𝐴} = ∅ → 𝐴 = 𝐵)
62sneqr 4731 . . 3 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
75, 6jaoi 854 . 2 (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵)
81, 7sylbi 220 1 ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  c0 4243  {csn 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-v 3443  df-dif 3884  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526
This theorem is referenced by:  k0004lem3  40852
  Copyright terms: Public domain W3C validator