MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsssn Structured version   Visualization version   GIF version

Theorem snsssn 4590
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1 𝐴 ∈ V
Assertion
Ref Expression
snsssn ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)

Proof of Theorem snsssn
StepHypRef Expression
1 sssn 4577 . 2 ({𝐴} ⊆ {𝐵} ↔ ({𝐴} = ∅ ∨ {𝐴} = {𝐵}))
2 sneqr.1 . . . . . 6 𝐴 ∈ V
32snnz 4530 . . . . 5 {𝐴} ≠ ∅
43neii 3001 . . . 4 ¬ {𝐴} = ∅
54pm2.21i 117 . . 3 ({𝐴} = ∅ → 𝐴 = 𝐵)
62sneqr 4589 . . 3 ({𝐴} = {𝐵} → 𝐴 = 𝐵)
75, 6jaoi 888 . 2 (({𝐴} = ∅ ∨ {𝐴} = {𝐵}) → 𝐴 = 𝐵)
81, 7sylbi 209 1 ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 878   = wceq 1656  wcel 2164  Vcvv 3414  wss 3798  c0 4146  {csn 4399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-v 3416  df-dif 3801  df-in 3805  df-ss 3812  df-nul 4147  df-sn 4400
This theorem is referenced by:  k0004lem3  39282
  Copyright terms: Public domain W3C validator