Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snnz | ⊢ {𝐴} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snnzg 4707 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-dif 3886 df-nul 4254 df-sn 4559 |
This theorem is referenced by: snsssn 4769 0nep0 5275 notzfaus 5280 nnullss 5371 snopeqop 5414 opthwiener 5422 fparlem3 7925 fparlem4 7926 1n0 8286 fodomr 8864 mapdom3 8885 ssfii 9108 marypha1lem 9122 djuexb 9598 fseqdom 9713 dfac5lem3 9812 isfin1-3 10073 axcc2lem 10123 axdc4lem 10142 fpwwe2lem12 10329 hash1n0 14064 s1nz 14240 isumltss 15488 0subg 18695 pmtrprfvalrn 19011 gsumxp 19492 lsssn0 20124 frlmip 20895 t1connperf 22495 dissnlocfin 22588 isufil2 22967 cnextf 23125 ustuqtop1 23301 rrxip 24459 dveq0 25069 wwlksnext 28159 clwwlknon1sn 28365 esumnul 31916 bnj970 32827 noxp1o 33793 bdayfo 33807 noetasuplem2 33864 noetasuplem4 33866 noetainflem2 33868 noetainflem4 33870 scutun12 33931 cofcut1 34017 filnetlem4 34497 bj-0nelsngl 35088 bj-2upln1upl 35141 dibn0 39094 diophrw 40497 dfac11 40803 |
Copyright terms: Public domain | W3C validator |