![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snnz | ⊢ {𝐴} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snnzg 4799 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-dif 3979 df-nul 4353 df-sn 4649 |
This theorem is referenced by: snsssn 4866 0nep0 5376 notzfaus 5381 nnullss 5482 snopeqop 5525 opthwiener 5533 fparlem3 8155 fparlem4 8156 1n0 8544 fodomr 9194 mapdom3 9215 fodomfir 9396 ssfii 9488 marypha1lem 9502 djuexb 9978 fseqdom 10095 dfac5lem3 10194 isfin1-3 10455 axcc2lem 10505 axdc4lem 10524 fpwwe2lem12 10711 hash1n0 14470 s1nz 14655 isumltss 15896 0subgOLD 19192 pmtrprfvalrn 19530 gsumxp 20018 lsssn0 20969 pzriprnglem4 21518 frlmip 21821 t1connperf 23465 dissnlocfin 23558 isufil2 23937 cnextf 24095 ustuqtop1 24271 rrxip 25443 dveq0 26059 noxp1o 27726 bdayfo 27740 noetasuplem2 27797 noetasuplem4 27799 noetainflem2 27801 noetainflem4 27803 scutun12 27873 cuteq0 27895 cuteq1 27896 cofcut1 27972 addscut2 28030 sleadd1 28040 addsuniflem 28052 addsasslem1 28054 addsasslem2 28055 negscut2 28090 mulscut2 28177 wwlksnext 29926 clwwlknon1sn 30132 esumnul 34012 bnj970 34923 filnetlem4 36347 bj-0nelsngl 36937 bj-2upln1upl 36990 dibn0 41110 diophrw 42715 dfac11 43019 |
Copyright terms: Public domain | W3C validator |