![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snnz | ⊢ {𝐴} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snnzg 4778 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ≠ wne 2937 Vcvv 3477 ∅c0 4338 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-dif 3965 df-nul 4339 df-sn 4631 |
This theorem is referenced by: snsssn 4845 0nep0 5363 notzfaus 5368 nnullss 5472 snopeqop 5515 opthwiener 5523 fparlem3 8137 fparlem4 8138 1n0 8524 fodomr 9166 mapdom3 9187 fodomfir 9365 ssfii 9456 marypha1lem 9470 djuexb 9946 fseqdom 10063 dfac5lem3 10162 isfin1-3 10423 axcc2lem 10473 axdc4lem 10492 fpwwe2lem12 10679 hash1n0 14456 s1nz 14641 isumltss 15880 0subgOLD 19182 pmtrprfvalrn 19520 gsumxp 20008 lsssn0 20963 pzriprnglem4 21512 frlmip 21815 t1connperf 23459 dissnlocfin 23552 isufil2 23931 cnextf 24089 ustuqtop1 24265 rrxip 25437 dveq0 26053 noxp1o 27722 bdayfo 27736 noetasuplem2 27793 noetasuplem4 27795 noetainflem2 27797 noetainflem4 27799 scutun12 27869 cuteq0 27891 cuteq1 27892 cofcut1 27968 addscut2 28026 sleadd1 28036 addsuniflem 28048 addsasslem1 28050 addsasslem2 28051 negscut2 28086 mulscut2 28173 wwlksnext 29922 clwwlknon1sn 30128 esumnul 34028 bnj970 34939 filnetlem4 36363 bj-0nelsngl 36953 bj-2upln1upl 37006 dibn0 41135 diophrw 42746 dfac11 43050 |
Copyright terms: Public domain | W3C validator |