| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| snnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snnz | ⊢ {𝐴} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snnzg 4741 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-dif 3920 df-nul 4300 df-sn 4593 |
| This theorem is referenced by: snsssn 4808 0nep0 5316 notzfaus 5321 nnullss 5425 snopeqop 5469 opthwiener 5477 fparlem3 8096 fparlem4 8097 1n0 8455 fodomr 9098 mapdom3 9119 fodomfir 9286 ssfii 9377 marypha1lem 9391 djuexb 9869 fseqdom 9986 dfac5lem3 10085 isfin1-3 10346 axcc2lem 10396 axdc4lem 10415 fpwwe2lem12 10602 hash1n0 14393 s1nz 14579 isumltss 15821 0subgOLD 19091 pmtrprfvalrn 19425 gsumxp 19913 lsssn0 20861 pzriprnglem4 21401 frlmip 21694 t1connperf 23330 dissnlocfin 23423 isufil2 23802 cnextf 23960 ustuqtop1 24136 rrxip 25297 dveq0 25912 noxp1o 27582 bdayfo 27596 noetasuplem2 27653 noetasuplem4 27655 noetainflem2 27657 noetainflem4 27659 scutun12 27729 cuteq0 27751 cuteq1 27753 cofcut1 27835 addscut2 27893 sleadd1 27903 addsuniflem 27915 addsasslem1 27917 addsasslem2 27918 negscut2 27953 mulscut2 28043 wwlksnext 29830 clwwlknon1sn 30036 esumnul 34045 bnj970 34944 filnetlem4 36376 bj-0nelsngl 36966 bj-2upln1upl 37019 dibn0 41154 diophrw 42754 dfac11 43058 fucofvalne 49318 |
| Copyright terms: Public domain | W3C validator |