Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snnz | ⊢ {𝐴} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snnzg 4710 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-dif 3890 df-nul 4257 df-sn 4562 |
This theorem is referenced by: snsssn 4772 0nep0 5280 notzfaus 5285 nnullss 5377 snopeqop 5420 opthwiener 5428 fparlem3 7954 fparlem4 7955 1n0 8318 fodomr 8915 mapdom3 8936 ssfii 9178 marypha1lem 9192 djuexb 9667 fseqdom 9782 dfac5lem3 9881 isfin1-3 10142 axcc2lem 10192 axdc4lem 10211 fpwwe2lem12 10398 hash1n0 14136 s1nz 14312 isumltss 15560 0subg 18780 pmtrprfvalrn 19096 gsumxp 19577 lsssn0 20209 frlmip 20985 t1connperf 22587 dissnlocfin 22680 isufil2 23059 cnextf 23217 ustuqtop1 23393 rrxip 24554 dveq0 25164 wwlksnext 28258 clwwlknon1sn 28464 esumnul 32016 bnj970 32927 noxp1o 33866 bdayfo 33880 noetasuplem2 33937 noetasuplem4 33939 noetainflem2 33941 noetainflem4 33943 scutun12 34004 cofcut1 34090 filnetlem4 34570 bj-0nelsngl 35161 bj-2upln1upl 35214 dibn0 39167 diophrw 40581 dfac11 40887 |
Copyright terms: Public domain | W3C validator |