| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| snnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snnz | ⊢ {𝐴} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snnzg 4726 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∅c0 4282 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-dif 3901 df-nul 4283 df-sn 4576 |
| This theorem is referenced by: snsssn 4792 0nep0 5298 notzfaus 5303 nnullss 5405 snopeqop 5449 opthwiener 5457 fparlem3 8050 fparlem4 8051 1n0 8409 fodomr 9048 mapdom3 9069 fodomfir 9219 ssfii 9310 marypha1lem 9324 djuexb 9809 fseqdom 9924 dfac5lem3 10023 isfin1-3 10284 axcc2lem 10334 axdc4lem 10353 fpwwe2lem12 10540 hash1n0 14330 s1nz 14517 isumltss 15757 pmtrprfvalrn 19402 gsumxp 19890 lsssn0 20883 pzriprnglem4 21423 frlmip 21717 t1connperf 23352 dissnlocfin 23445 isufil2 23824 cnextf 23982 ustuqtop1 24157 rrxip 25318 dveq0 25933 noxp1o 27603 bdayfo 27617 noetasuplem2 27674 noetasuplem4 27676 noetainflem2 27678 noetainflem4 27680 scutun12 27752 cuteq0 27777 cuteq1 27779 cofcut1 27865 addscut2 27923 sleadd1 27933 addsuniflem 27945 addsasslem1 27947 addsasslem2 27948 negscut2 27983 mulscut2 28073 wwlksnext 29873 clwwlknon1sn 30082 esumnul 34082 bnj970 34980 filnetlem4 36446 bj-0nelsngl 37036 bj-2upln1upl 37089 dibn0 41272 diophrw 42876 dfac11 43179 fucofvalne 49450 |
| Copyright terms: Public domain | W3C validator |