| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| snnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snnz | ⊢ {𝐴} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snnzg 4727 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4283 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3905 df-nul 4284 df-sn 4577 |
| This theorem is referenced by: snsssn 4793 0nep0 5296 notzfaus 5301 nnullss 5402 snopeqop 5446 opthwiener 5454 fparlem3 8044 fparlem4 8045 1n0 8403 fodomr 9041 mapdom3 9062 fodomfir 9212 ssfii 9303 marypha1lem 9317 djuexb 9799 fseqdom 9914 dfac5lem3 10013 isfin1-3 10274 axcc2lem 10324 axdc4lem 10343 fpwwe2lem12 10530 hash1n0 14325 s1nz 14512 isumltss 15752 0subgOLD 19062 pmtrprfvalrn 19398 gsumxp 19886 lsssn0 20879 pzriprnglem4 21419 frlmip 21713 t1connperf 23349 dissnlocfin 23442 isufil2 23821 cnextf 23979 ustuqtop1 24154 rrxip 25315 dveq0 25930 noxp1o 27600 bdayfo 27614 noetasuplem2 27671 noetasuplem4 27673 noetainflem2 27675 noetainflem4 27677 scutun12 27749 cuteq0 27774 cuteq1 27776 cofcut1 27862 addscut2 27920 sleadd1 27930 addsuniflem 27942 addsasslem1 27944 addsasslem2 27945 negscut2 27980 mulscut2 28070 wwlksnext 29869 clwwlknon1sn 30075 esumnul 34056 bnj970 34954 filnetlem4 36414 bj-0nelsngl 37004 bj-2upln1upl 37057 dibn0 41191 diophrw 42791 dfac11 43094 fucofvalne 49356 |
| Copyright terms: Public domain | W3C validator |