Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snnz | ⊢ {𝐴} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snnzg 4710 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ≠ wne 2943 Vcvv 3429 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-dif 3889 df-nul 4257 df-sn 4562 |
This theorem is referenced by: snsssn 4772 0nep0 5278 notzfaus 5283 nnullss 5375 snopeqop 5418 opthwiener 5426 fparlem3 7941 fparlem4 7942 1n0 8305 fodomr 8902 mapdom3 8923 ssfii 9165 marypha1lem 9179 djuexb 9677 fseqdom 9792 dfac5lem3 9891 isfin1-3 10152 axcc2lem 10202 axdc4lem 10221 fpwwe2lem12 10408 hash1n0 14146 s1nz 14322 isumltss 15570 0subg 18790 pmtrprfvalrn 19106 gsumxp 19587 lsssn0 20219 frlmip 20995 t1connperf 22597 dissnlocfin 22690 isufil2 23069 cnextf 23227 ustuqtop1 23403 rrxip 24564 dveq0 25174 wwlksnext 28266 clwwlknon1sn 28472 esumnul 32024 bnj970 32935 noxp1o 33874 bdayfo 33888 noetasuplem2 33945 noetasuplem4 33947 noetainflem2 33949 noetainflem4 33951 scutun12 34012 cofcut1 34098 filnetlem4 34578 bj-0nelsngl 35169 bj-2upln1upl 35222 dibn0 39175 diophrw 40589 dfac11 40895 |
Copyright terms: Public domain | W3C validator |