| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| snnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snnz | ⊢ {𝐴} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snnzg 4750 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-dif 3929 df-nul 4309 df-sn 4602 |
| This theorem is referenced by: snsssn 4817 0nep0 5328 notzfaus 5333 nnullss 5437 snopeqop 5481 opthwiener 5489 fparlem3 8113 fparlem4 8114 1n0 8500 fodomr 9142 mapdom3 9163 fodomfir 9340 ssfii 9431 marypha1lem 9445 djuexb 9923 fseqdom 10040 dfac5lem3 10139 isfin1-3 10400 axcc2lem 10450 axdc4lem 10469 fpwwe2lem12 10656 hash1n0 14439 s1nz 14625 isumltss 15864 0subgOLD 19135 pmtrprfvalrn 19469 gsumxp 19957 lsssn0 20905 pzriprnglem4 21445 frlmip 21738 t1connperf 23374 dissnlocfin 23467 isufil2 23846 cnextf 24004 ustuqtop1 24180 rrxip 25342 dveq0 25957 noxp1o 27627 bdayfo 27641 noetasuplem2 27698 noetasuplem4 27700 noetainflem2 27702 noetainflem4 27704 scutun12 27774 cuteq0 27796 cuteq1 27798 cofcut1 27880 addscut2 27938 sleadd1 27948 addsuniflem 27960 addsasslem1 27962 addsasslem2 27963 negscut2 27998 mulscut2 28088 wwlksnext 29875 clwwlknon1sn 30081 esumnul 34079 bnj970 34978 filnetlem4 36399 bj-0nelsngl 36989 bj-2upln1upl 37042 dibn0 41172 diophrw 42782 dfac11 43086 fucofvalne 49236 |
| Copyright terms: Public domain | W3C validator |