| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| snnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snnz | ⊢ {𝐴} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snnzg 4738 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3917 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: snsssn 4805 0nep0 5313 notzfaus 5318 nnullss 5422 snopeqop 5466 opthwiener 5474 fparlem3 8093 fparlem4 8094 1n0 8452 fodomr 9092 mapdom3 9113 fodomfir 9279 ssfii 9370 marypha1lem 9384 djuexb 9862 fseqdom 9979 dfac5lem3 10078 isfin1-3 10339 axcc2lem 10389 axdc4lem 10408 fpwwe2lem12 10595 hash1n0 14386 s1nz 14572 isumltss 15814 0subgOLD 19084 pmtrprfvalrn 19418 gsumxp 19906 lsssn0 20854 pzriprnglem4 21394 frlmip 21687 t1connperf 23323 dissnlocfin 23416 isufil2 23795 cnextf 23953 ustuqtop1 24129 rrxip 25290 dveq0 25905 noxp1o 27575 bdayfo 27589 noetasuplem2 27646 noetasuplem4 27648 noetainflem2 27650 noetainflem4 27652 scutun12 27722 cuteq0 27744 cuteq1 27746 cofcut1 27828 addscut2 27886 sleadd1 27896 addsuniflem 27908 addsasslem1 27910 addsasslem2 27911 negscut2 27946 mulscut2 28036 wwlksnext 29823 clwwlknon1sn 30029 esumnul 34038 bnj970 34937 filnetlem4 36369 bj-0nelsngl 36959 bj-2upln1upl 37012 dibn0 41147 diophrw 42747 dfac11 43051 fucofvalne 49314 |
| Copyright terms: Public domain | W3C validator |