| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snnz | Structured version Visualization version GIF version | ||
| Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| snnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snnz | ⊢ {𝐴} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snnzg 4728 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ {𝐴} ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∅c0 4286 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-dif 3908 df-nul 4287 df-sn 4580 |
| This theorem is referenced by: snsssn 4795 0nep0 5300 notzfaus 5305 nnullss 5409 snopeqop 5453 opthwiener 5461 fparlem3 8054 fparlem4 8055 1n0 8413 fodomr 9052 mapdom3 9073 fodomfir 9237 ssfii 9328 marypha1lem 9342 djuexb 9824 fseqdom 9939 dfac5lem3 10038 isfin1-3 10299 axcc2lem 10349 axdc4lem 10368 fpwwe2lem12 10555 hash1n0 14346 s1nz 14532 isumltss 15773 0subgOLD 19049 pmtrprfvalrn 19385 gsumxp 19873 lsssn0 20869 pzriprnglem4 21409 frlmip 21703 t1connperf 23339 dissnlocfin 23432 isufil2 23811 cnextf 23969 ustuqtop1 24145 rrxip 25306 dveq0 25921 noxp1o 27591 bdayfo 27605 noetasuplem2 27662 noetasuplem4 27664 noetainflem2 27666 noetainflem4 27668 scutun12 27739 cuteq0 27764 cuteq1 27766 cofcut1 27851 addscut2 27909 sleadd1 27919 addsuniflem 27931 addsasslem1 27933 addsasslem2 27934 negscut2 27969 mulscut2 28059 wwlksnext 29856 clwwlknon1sn 30062 esumnul 34014 bnj970 34913 filnetlem4 36354 bj-0nelsngl 36944 bj-2upln1upl 36997 dibn0 41132 diophrw 42732 dfac11 43035 fucofvalne 49311 |
| Copyright terms: Public domain | W3C validator |