Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem3 Structured version   Visualization version   GIF version

Theorem k0004lem3 44111
Description: When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.)
Assertion
Ref Expression
k0004lem3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))

Proof of Theorem k0004lem3
StepHypRef Expression
1 sneq 4658 . . . . . 6 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} = {𝐶})
2 eqimss 4067 . . . . . 6 ({(𝐹𝐴)} = {𝐶} → {(𝐹𝐴)} ⊆ {𝐶})
31, 2syl 17 . . . . 5 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} ⊆ {𝐶})
4 fvex 6933 . . . . . 6 (𝐹𝐴) ∈ V
54snsssn 4866 . . . . 5 ({(𝐹𝐴)} ⊆ {𝐶} → (𝐹𝐴) = 𝐶)
63, 5impbii 209 . . . 4 ((𝐹𝐴) = 𝐶 ↔ {(𝐹𝐴)} ⊆ {𝐶})
7 elmapfn 8923 . . . . . 6 (𝐹 ∈ (𝐵m {𝐴}) → 𝐹 Fn {𝐴})
8 simpl1 1191 . . . . . . 7 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴𝑈)
9 snidg 4682 . . . . . . 7 (𝐴𝑈𝐴 ∈ {𝐴})
108, 9syl 17 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴 ∈ {𝐴})
11 fnsnfv 7001 . . . . . 6 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
127, 10, 11syl2an2 685 . . . . 5 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1312sseq1d 4040 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ({(𝐹𝐴)} ⊆ {𝐶} ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
146, 13bitrid 283 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ((𝐹𝐴) = 𝐶 ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
1514pm5.32da 578 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ (𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶})))
16 snex 5451 . . 3 {𝐴} ∈ V
17 simp2 1137 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐵𝑉)
18 simp3 1138 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶𝐵)
1918snssd 4834 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → {𝐶} ⊆ 𝐵)
20 k0004lem2 44110 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑉 ∧ {𝐶} ⊆ 𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
2116, 17, 19, 20mp3an2i 1466 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
22 snex 5451 . . . 4 {𝐶} ∈ V
2322, 16elmap 8929 . . 3 (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶{𝐶})
24 fsng 7171 . . . 4 ((𝐴𝑈𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
25243adant2 1131 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2623, 25bitrid 283 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2715, 21, 263bitrd 305 1 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  {csn 4648  cop 4654  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  k0004val0  44116
  Copyright terms: Public domain W3C validator