Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem3 Structured version   Visualization version   GIF version

Theorem k0004lem3 42543
Description: When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.)
Assertion
Ref Expression
k0004lem3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))

Proof of Theorem k0004lem3
StepHypRef Expression
1 sneq 4601 . . . . . 6 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} = {𝐶})
2 eqimss 4005 . . . . . 6 ({(𝐹𝐴)} = {𝐶} → {(𝐹𝐴)} ⊆ {𝐶})
31, 2syl 17 . . . . 5 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} ⊆ {𝐶})
4 fvex 6860 . . . . . 6 (𝐹𝐴) ∈ V
54snsssn 4804 . . . . 5 ({(𝐹𝐴)} ⊆ {𝐶} → (𝐹𝐴) = 𝐶)
63, 5impbii 208 . . . 4 ((𝐹𝐴) = 𝐶 ↔ {(𝐹𝐴)} ⊆ {𝐶})
7 elmapfn 8810 . . . . . 6 (𝐹 ∈ (𝐵m {𝐴}) → 𝐹 Fn {𝐴})
8 simpl1 1191 . . . . . . 7 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴𝑈)
9 snidg 4625 . . . . . . 7 (𝐴𝑈𝐴 ∈ {𝐴})
108, 9syl 17 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴 ∈ {𝐴})
11 fnsnfv 6925 . . . . . 6 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
127, 10, 11syl2an2 684 . . . . 5 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1312sseq1d 3978 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ({(𝐹𝐴)} ⊆ {𝐶} ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
146, 13bitrid 282 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ((𝐹𝐴) = 𝐶 ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
1514pm5.32da 579 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ (𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶})))
16 snex 5393 . . 3 {𝐴} ∈ V
17 simp2 1137 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐵𝑉)
18 simp3 1138 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶𝐵)
1918snssd 4774 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → {𝐶} ⊆ 𝐵)
20 k0004lem2 42542 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑉 ∧ {𝐶} ⊆ 𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
2116, 17, 19, 20mp3an2i 1466 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
22 snex 5393 . . . 4 {𝐶} ∈ V
2322, 16elmap 8816 . . 3 (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶{𝐶})
24 fsng 7088 . . . 4 ((𝐴𝑈𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
25243adant2 1131 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2623, 25bitrid 282 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2715, 21, 263bitrd 304 1 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3446  wss 3913  {csn 4591  cop 4597  cima 5641   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  m cmap 8772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927  df-map 8774
This theorem is referenced by:  k0004val0  42548
  Copyright terms: Public domain W3C validator