Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem3 Structured version   Visualization version   GIF version

Theorem k0004lem3 41759
Description: When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.)
Assertion
Ref Expression
k0004lem3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))

Proof of Theorem k0004lem3
StepHypRef Expression
1 sneq 4571 . . . . . 6 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} = {𝐶})
2 eqimss 3977 . . . . . 6 ({(𝐹𝐴)} = {𝐶} → {(𝐹𝐴)} ⊆ {𝐶})
31, 2syl 17 . . . . 5 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} ⊆ {𝐶})
4 fvex 6787 . . . . . 6 (𝐹𝐴) ∈ V
54snsssn 4772 . . . . 5 ({(𝐹𝐴)} ⊆ {𝐶} → (𝐹𝐴) = 𝐶)
63, 5impbii 208 . . . 4 ((𝐹𝐴) = 𝐶 ↔ {(𝐹𝐴)} ⊆ {𝐶})
7 elmapfn 8653 . . . . . 6 (𝐹 ∈ (𝐵m {𝐴}) → 𝐹 Fn {𝐴})
8 simpl1 1190 . . . . . . 7 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴𝑈)
9 snidg 4595 . . . . . . 7 (𝐴𝑈𝐴 ∈ {𝐴})
108, 9syl 17 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → 𝐴 ∈ {𝐴})
11 fnsnfv 6847 . . . . . 6 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
127, 10, 11syl2an2 683 . . . . 5 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1312sseq1d 3952 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ({(𝐹𝐴)} ⊆ {𝐶} ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
146, 13bitrid 282 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵m {𝐴})) → ((𝐹𝐴) = 𝐶 ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
1514pm5.32da 579 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ (𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶})))
16 snex 5354 . . 3 {𝐴} ∈ V
17 simp2 1136 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐵𝑉)
18 simp3 1137 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶𝐵)
1918snssd 4742 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → {𝐶} ⊆ 𝐵)
20 k0004lem2 41758 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑉 ∧ {𝐶} ⊆ 𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
2116, 17, 19, 20mp3an2i 1465 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑m {𝐴})))
22 snex 5354 . . . 4 {𝐶} ∈ V
2322, 16elmap 8659 . . 3 (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹:{𝐴}⟶{𝐶})
24 fsng 7009 . . . 4 ((𝐴𝑈𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
25243adant2 1130 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2623, 25bitrid 282 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ ({𝐶} ↑m {𝐴}) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2715, 21, 263bitrd 305 1 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵m {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  {csn 4561  cop 4567  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617
This theorem is referenced by:  k0004val0  41764
  Copyright terms: Public domain W3C validator