|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > spc3gv | Structured version Visualization version GIF version | ||
| Description: Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) | 
| Ref | Expression | 
|---|---|
| spc3egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| spc3gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spc3egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (¬ 𝜑 ↔ ¬ 𝜓)) | 
| 3 | 2 | spc3egv 3603 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (¬ 𝜓 → ∃𝑥∃𝑦∃𝑧 ¬ 𝜑)) | 
| 4 | exnal 1827 | . . . . . . 7 ⊢ (∃𝑧 ¬ 𝜑 ↔ ¬ ∀𝑧𝜑) | |
| 5 | 4 | exbii 1848 | . . . . . 6 ⊢ (∃𝑦∃𝑧 ¬ 𝜑 ↔ ∃𝑦 ¬ ∀𝑧𝜑) | 
| 6 | exnal 1827 | . . . . . 6 ⊢ (∃𝑦 ¬ ∀𝑧𝜑 ↔ ¬ ∀𝑦∀𝑧𝜑) | |
| 7 | 5, 6 | bitri 275 | . . . . 5 ⊢ (∃𝑦∃𝑧 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑧𝜑) | 
| 8 | 7 | exbii 1848 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧 ¬ 𝜑 ↔ ∃𝑥 ¬ ∀𝑦∀𝑧𝜑) | 
| 9 | exnal 1827 | . . . 4 ⊢ (∃𝑥 ¬ ∀𝑦∀𝑧𝜑 ↔ ¬ ∀𝑥∀𝑦∀𝑧𝜑) | |
| 10 | 8, 9 | bitr2i 276 | . . 3 ⊢ (¬ ∀𝑥∀𝑦∀𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧 ¬ 𝜑) | 
| 11 | 3, 10 | imbitrrdi 252 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (¬ 𝜓 → ¬ ∀𝑥∀𝑦∀𝑧𝜑)) | 
| 12 | 11 | con4d 115 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 | 
| This theorem is referenced by: funopg 6600 pslem 18617 dirtr 18647 mclsax 35574 fununiq 35769 | 
| Copyright terms: Public domain | W3C validator |