MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pslem Structured version   Visualization version   GIF version

Theorem pslem 18525
Description: Lemma for psref 18527 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
pslem (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))

Proof of Theorem pslem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrel 18522 . . . . . 6 (𝑅 ∈ PosetRel → Rel 𝑅)
2 brrelex12 5729 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2sylan 581 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 brrelex2 5731 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
51, 4sylan 581 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐵𝑅𝐶) → 𝐶 ∈ V)
63, 5anim12dan 620 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V))
7 pstr2 18524 . . . . . 6 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
8 cotr 6112 . . . . . 6 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
97, 8sylib 217 . . . . 5 (𝑅 ∈ PosetRel → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109adantr 482 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
11 simpr 486 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
12 breq12 5154 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑅𝑦𝐴𝑅𝐵))
13123adant3 1133 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑦𝐴𝑅𝐵))
14 breq12 5154 . . . . . . . . 9 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
15143adant1 1131 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
1613, 15anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
17 breq12 5154 . . . . . . . 8 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
18173adant2 1132 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
1916, 18imbi12d 345 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2019spc3gv 3595 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
21203expa 1119 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
226, 10, 11, 21syl3c 66 . . 3 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)
2322ex 414 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
24 psref2 18523 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
25 asymref2 6119 . . . 4 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
2625simplbi 499 . . 3 ((𝑅𝑅) = ( I ↾ 𝑅) → ∀𝑥 𝑅𝑥𝑅𝑥)
27 breq12 5154 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
2827anidms 568 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
2928rspccv 3610 . . 3 (∀𝑥 𝑅𝑥𝑅𝑥 → (𝐴 𝑅𝐴𝑅𝐴))
3024, 26, 293syl 18 . 2 (𝑅 ∈ PosetRel → (𝐴 𝑅𝐴𝑅𝐴))
313adantrr 716 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3225simprbi 498 . . . . . 6 ((𝑅𝑅) = ( I ↾ 𝑅) → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3324, 32syl 17 . . . . 5 (𝑅 ∈ PosetRel → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3433adantr 482 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
35 simpr 486 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → (𝐴𝑅𝐵𝐵𝑅𝐴))
36 breq12 5154 . . . . . . . 8 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝑦𝑅𝑥𝐵𝑅𝐴))
3736ancoms 460 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦𝑅𝑥𝐵𝑅𝐴))
3812, 37anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝐴𝑅𝐵𝐵𝑅𝐴)))
39 eqeq12 2750 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
4038, 39imbi12d 345 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
4140spc2gv 3591 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
4231, 34, 35, 41syl3c 66 . . 3 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → 𝐴 = 𝐵)
4342ex 414 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵))
4423, 30, 433jca 1129 1 (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cin 3948  wss 3949   cuni 4909   class class class wbr 5149   I cid 5574  ccnv 5676  cres 5679  ccom 5681  Rel wrel 5682  PosetRelcps 18517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-res 5689  df-ps 18519
This theorem is referenced by:  psdmrn  18526  psref  18527  psasym  18529  pstr  18530
  Copyright terms: Public domain W3C validator