MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pslem Structured version   Visualization version   GIF version

Theorem pslem 18475
Description: Lemma for psref 18477 and others. (Contributed by NM, 12-May-2008.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
pslem (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))

Proof of Theorem pslem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrel 18472 . . . . . 6 (𝑅 ∈ PosetRel → Rel 𝑅)
2 brrelex12 5668 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
31, 2sylan 580 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 brrelex2 5670 . . . . . 6 ((Rel 𝑅𝐵𝑅𝐶) → 𝐶 ∈ V)
51, 4sylan 580 . . . . 5 ((𝑅 ∈ PosetRel ∧ 𝐵𝑅𝐶) → 𝐶 ∈ V)
63, 5anim12dan 619 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V))
7 pstr2 18474 . . . . . 6 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
8 cotr 6059 . . . . . 6 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
97, 8sylib 218 . . . . 5 (𝑅 ∈ PosetRel → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
109adantr 480 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
11 simpr 484 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → (𝐴𝑅𝐵𝐵𝑅𝐶))
12 breq12 5096 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑅𝑦𝐴𝑅𝐵))
13123adant3 1132 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑦𝐴𝑅𝐵))
14 breq12 5096 . . . . . . . . 9 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
15143adant1 1130 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦𝑅𝑧𝐵𝑅𝐶))
1613, 15anbi12d 632 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
17 breq12 5096 . . . . . . . 8 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
18173adant2 1131 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝑅𝑧𝐴𝑅𝐶))
1916, 18imbi12d 344 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
2019spc3gv 3559 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
21203expa 1118 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)))
226, 10, 11, 21syl3c 66 . . 3 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐶)) → 𝐴𝑅𝐶)
2322ex 412 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶))
24 psref2 18473 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) = ( I ↾ 𝑅))
25 asymref2 6064 . . . 4 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
2625simplbi 497 . . 3 ((𝑅𝑅) = ( I ↾ 𝑅) → ∀𝑥 𝑅𝑥𝑅𝑥)
27 breq12 5096 . . . . 5 ((𝑥 = 𝐴𝑥 = 𝐴) → (𝑥𝑅𝑥𝐴𝑅𝐴))
2827anidms 566 . . . 4 (𝑥 = 𝐴 → (𝑥𝑅𝑥𝐴𝑅𝐴))
2928rspccv 3574 . . 3 (∀𝑥 𝑅𝑥𝑅𝑥 → (𝐴 𝑅𝐴𝑅𝐴))
3024, 26, 293syl 18 . 2 (𝑅 ∈ PosetRel → (𝐴 𝑅𝐴𝑅𝐴))
313adantrr 717 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
3225simprbi 496 . . . . . 6 ((𝑅𝑅) = ( I ↾ 𝑅) → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3324, 32syl 17 . . . . 5 (𝑅 ∈ PosetRel → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3433adantr 480 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
35 simpr 484 . . . 4 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → (𝐴𝑅𝐵𝐵𝑅𝐴))
36 breq12 5096 . . . . . . . 8 ((𝑦 = 𝐵𝑥 = 𝐴) → (𝑦𝑅𝑥𝐵𝑅𝐴))
3736ancoms 458 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦𝑅𝑥𝐵𝑅𝐴))
3812, 37anbi12d 632 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝐴𝑅𝐵𝐵𝑅𝐴)))
39 eqeq12 2748 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
4038, 39imbi12d 344 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
4140spc2gv 3555 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
4231, 34, 35, 41syl3c 66 . . 3 ((𝑅 ∈ PosetRel ∧ (𝐴𝑅𝐵𝐵𝑅𝐴)) → 𝐴 = 𝐵)
4342ex 412 . 2 (𝑅 ∈ PosetRel → ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵))
4423, 30, 433jca 1128 1 (𝑅 ∈ PosetRel → (((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶) ∧ (𝐴 𝑅𝐴𝑅𝐴) ∧ ((𝐴𝑅𝐵𝐵𝑅𝐴) → 𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3901  wss 3902   cuni 4859   class class class wbr 5091   I cid 5510  ccnv 5615  cres 5618  ccom 5620  Rel wrel 5621  PosetRelcps 18467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-res 5628  df-ps 18469
This theorem is referenced by:  psdmrn  18476  psref  18477  psasym  18479  pstr  18480
  Copyright terms: Public domain W3C validator