| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fununiq | Structured version Visualization version GIF version | ||
| Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| fununiq.1 | ⊢ 𝐴 ∈ V |
| fununiq.2 | ⊢ 𝐵 ∈ V |
| fununiq.3 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| fununiq | ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 6546 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
| 2 | fununiq.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | fununiq.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | fununiq.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 5 | breq12 5129 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
| 6 | 5 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) |
| 7 | breq12 5129 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) | |
| 8 | 7 | 3adant2 1131 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) |
| 9 | 6, 8 | anbi12d 632 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) ↔ (𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶))) |
| 10 | eqeq12 2753 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) | |
| 11 | 10 | 3adant1 1130 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) |
| 12 | 9, 11 | imbi12d 344 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
| 13 | 12 | spc3gv 3588 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
| 14 | 2, 3, 4, 13 | mp3an 1463 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| 15 | 1, 14 | simplbiim 504 | 1 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: funbreq 35792 |
| Copyright terms: Public domain | W3C validator |