![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fununiq | Structured version Visualization version GIF version |
Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
fununiq.1 | ⊢ 𝐴 ∈ V |
fununiq.2 | ⊢ 𝐵 ∈ V |
fununiq.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fununiq | ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun2 6583 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
2 | fununiq.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | fununiq.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | fununiq.3 | . . 3 ⊢ 𝐶 ∈ V | |
5 | breq12 5171 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
6 | 5 | 3adant3 1132 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) |
7 | breq12 5171 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) | |
8 | 7 | 3adant2 1131 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) |
9 | 6, 8 | anbi12d 631 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) ↔ (𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶))) |
10 | eqeq12 2757 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) | |
11 | 10 | 3adant1 1130 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) |
12 | 9, 11 | imbi12d 344 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
13 | 12 | spc3gv 3617 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
14 | 2, 3, 4, 13 | mp3an 1461 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
15 | 1, 14 | simplbiim 504 | 1 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 Rel wrel 5705 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: funbreq 35733 |
Copyright terms: Public domain | W3C validator |