![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fununiq | Structured version Visualization version GIF version |
Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
fununiq.1 | ⊢ 𝐴 ∈ V |
fununiq.2 | ⊢ 𝐵 ∈ V |
fununiq.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fununiq | ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun2 6552 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
2 | fununiq.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | fununiq.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | fununiq.3 | . . 3 ⊢ 𝐶 ∈ V | |
5 | breq12 5152 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
6 | 5 | 3adant3 1130 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) |
7 | breq12 5152 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) | |
8 | 7 | 3adant2 1129 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) |
9 | 6, 8 | anbi12d 629 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) ↔ (𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶))) |
10 | eqeq12 2747 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) | |
11 | 10 | 3adant1 1128 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) |
12 | 9, 11 | imbi12d 343 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
13 | 12 | spc3gv 3593 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
14 | 2, 3, 4, 13 | mp3an 1459 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
15 | 1, 14 | simplbiim 503 | 1 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2104 Vcvv 3472 class class class wbr 5147 Rel wrel 5680 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-fun 6544 |
This theorem is referenced by: funbreq 35045 |
Copyright terms: Public domain | W3C validator |