Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fununiq | Structured version Visualization version GIF version |
Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
Ref | Expression |
---|---|
fununiq.1 | ⊢ 𝐴 ∈ V |
fununiq.2 | ⊢ 𝐵 ∈ V |
fununiq.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fununiq | ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun2 6443 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
2 | fununiq.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | fununiq.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | fununiq.3 | . . 3 ⊢ 𝐶 ∈ V | |
5 | breq12 5079 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) | |
6 | 5 | 3adant3 1131 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝐵)) |
7 | breq12 5079 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) | |
8 | 7 | 3adant2 1130 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑥𝐹𝑧 ↔ 𝐴𝐹𝐶)) |
9 | 6, 8 | anbi12d 631 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) ↔ (𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶))) |
10 | eqeq12 2755 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) | |
11 | 10 | 3adant1 1129 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝑦 = 𝑧 ↔ 𝐵 = 𝐶)) |
12 | 9, 11 | imbi12d 345 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
13 | 12 | spc3gv 3543 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶))) |
14 | 2, 3, 4, 13 | mp3an 1460 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
15 | 1, 14 | simplbiim 505 | 1 ⊢ (Fun 𝐹 → ((𝐴𝐹𝐵 ∧ 𝐴𝐹𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 Rel wrel 5594 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: funbreq 33744 |
Copyright terms: Public domain | W3C validator |