Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fununiq Structured version   Visualization version   GIF version

Theorem fununiq 31994
Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
fununiq.1 𝐴 ∈ V
fununiq.2 𝐵 ∈ V
fununiq.3 𝐶 ∈ V
Assertion
Ref Expression
fununiq (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))

Proof of Theorem fununiq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 6114 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2 fununiq.1 . . . 4 𝐴 ∈ V
3 fununiq.2 . . . 4 𝐵 ∈ V
4 fununiq.3 . . . 4 𝐶 ∈ V
5 breq12 4856 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐹𝑦𝐴𝐹𝐵))
653adant3 1155 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝐹𝑦𝐴𝐹𝐵))
7 breq12 4856 . . . . . . . 8 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝐹𝑧𝐴𝐹𝐶))
873adant2 1154 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝐹𝑧𝐴𝐹𝐶))
96, 8anbi12d 618 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (𝐴𝐹𝐵𝐴𝐹𝐶)))
10 eqeq12 2826 . . . . . . 7 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦 = 𝑧𝐵 = 𝐶))
11103adant1 1153 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦 = 𝑧𝐵 = 𝐶))
129, 11imbi12d 335 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶)))
1312spc3gv 3498 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶)))
142, 3, 4, 13mp3an 1578 . . 3 (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
1514adantl 469 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)) → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
161, 15sylbi 208 1 (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100  wal 1635   = wceq 1637  wcel 2157  Vcvv 3398   class class class wbr 4851  Rel wrel 5323  Fun wfun 6098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rab 3112  df-v 3400  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-br 4852  df-opab 4914  df-id 5226  df-cnv 5326  df-co 5327  df-fun 6106
This theorem is referenced by:  funbreq  31995
  Copyright terms: Public domain W3C validator