Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fununiq Structured version   Visualization version   GIF version

Theorem fununiq 33252
 Description: The uniqueness condition of functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypotheses
Ref Expression
fununiq.1 𝐴 ∈ V
fununiq.2 𝐵 ∈ V
fununiq.3 𝐶 ∈ V
Assertion
Ref Expression
fununiq (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))

Proof of Theorem fununiq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 6346 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
2 fununiq.1 . . 3 𝐴 ∈ V
3 fununiq.2 . . 3 𝐵 ∈ V
4 fununiq.3 . . 3 𝐶 ∈ V
5 breq12 5038 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐹𝑦𝐴𝐹𝐵))
653adant3 1130 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝐹𝑦𝐴𝐹𝐵))
7 breq12 5038 . . . . . . 7 ((𝑥 = 𝐴𝑧 = 𝐶) → (𝑥𝐹𝑧𝐴𝐹𝐶))
873adant2 1129 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑥𝐹𝑧𝐴𝐹𝐶))
96, 8anbi12d 634 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ((𝑥𝐹𝑦𝑥𝐹𝑧) ↔ (𝐴𝐹𝐵𝐴𝐹𝐶)))
10 eqeq12 2773 . . . . . 6 ((𝑦 = 𝐵𝑧 = 𝐶) → (𝑦 = 𝑧𝐵 = 𝐶))
11103adant1 1128 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝑦 = 𝑧𝐵 = 𝐶))
129, 11imbi12d 349 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) ↔ ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶)))
1312spc3gv 3524 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶)))
142, 3, 4, 13mp3an 1459 . 2 (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
151, 14simplbiim 509 1 (Fun 𝐹 → ((𝐴𝐹𝐵𝐴𝐹𝐶) → 𝐵 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085  ∀wal 1537   = wceq 1539   ∈ wcel 2112  Vcvv 3410   class class class wbr 5033  Rel wrel 5530  Fun wfun 6330 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-br 5034  df-opab 5096  df-id 5431  df-cnv 5533  df-co 5534  df-fun 6338 This theorem is referenced by:  funbreq  33253
 Copyright terms: Public domain W3C validator