Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfis2d Structured version   Visualization version   GIF version

Theorem tfis2d 44803
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.)
Hypotheses
Ref Expression
tfis2d.1 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
tfis2d.2 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))
Assertion
Ref Expression
tfis2d (𝜑 → (𝑥 ∈ On → 𝜓))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜒,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem tfis2d
StepHypRef Expression
1 tfis2d.1 . . . . 5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
21com12 32 . . . 4 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
32pm5.74d 275 . . 3 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
4 r19.21v 3175 . . . 4 (∀𝑦𝑥 (𝜑𝜒) ↔ (𝜑 → ∀𝑦𝑥 𝜒))
5 tfis2d.2 . . . . . 6 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))
65com12 32 . . . . 5 (𝑥 ∈ On → (𝜑 → (∀𝑦𝑥 𝜒𝜓)))
76a2d 29 . . . 4 (𝑥 ∈ On → ((𝜑 → ∀𝑦𝑥 𝜒) → (𝜑𝜓)))
84, 7syl5bi 244 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 (𝜑𝜒) → (𝜑𝜓)))
93, 8tfis2 7571 . 2 (𝑥 ∈ On → (𝜑𝜓))
109com12 32 1 (𝜑 → (𝑥 ∈ On → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wcel 2114  wral 3138  Oncon0 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-ord 6194  df-on 6195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator