![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tfis2d | Structured version Visualization version GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.) |
Ref | Expression |
---|---|
tfis2d.1 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
tfis2d.2 | ⊢ (𝜑 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) |
Ref | Expression |
---|---|
tfis2d | ⊢ (𝜑 → (𝑥 ∈ On → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfis2d.1 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
2 | 1 | com12 32 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 ↔ 𝜒))) |
3 | 2 | pm5.74d 265 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
4 | r19.21v 3139 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦 ∈ 𝑥 𝜒)) | |
5 | tfis2d.2 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) | |
6 | 5 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ On → (𝜑 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) |
7 | 6 | a2d 29 | . . . 4 ⊢ (𝑥 ∈ On → ((𝜑 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜑 → 𝜓))) |
8 | 4, 7 | syl5bi 234 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (𝜑 → 𝜒) → (𝜑 → 𝜓))) |
9 | 3, 8 | tfis2 7288 | . 2 ⊢ (𝑥 ∈ On → (𝜑 → 𝜓)) |
10 | 9 | com12 32 | 1 ⊢ (𝜑 → (𝑥 ∈ On → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2157 ∀wral 3087 Oncon0 5939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-tr 4944 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-ord 5942 df-on 5943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |