Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfis2d Structured version   Visualization version   GIF version

Theorem tfis2d 49673
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.)
Hypotheses
Ref Expression
tfis2d.1 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
tfis2d.2 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))
Assertion
Ref Expression
tfis2d (𝜑 → (𝑥 ∈ On → 𝜓))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜒,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem tfis2d
StepHypRef Expression
1 tfis2d.1 . . . . 5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
21com12 32 . . . 4 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
32pm5.74d 273 . . 3 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
4 r19.21v 3159 . . . 4 (∀𝑦𝑥 (𝜑𝜒) ↔ (𝜑 → ∀𝑦𝑥 𝜒))
5 tfis2d.2 . . . . . 6 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))
65com12 32 . . . . 5 (𝑥 ∈ On → (𝜑 → (∀𝑦𝑥 𝜒𝜓)))
76a2d 29 . . . 4 (𝑥 ∈ On → ((𝜑 → ∀𝑦𝑥 𝜒) → (𝜑𝜓)))
84, 7biimtrid 242 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 (𝜑𝜒) → (𝜑𝜓)))
93, 8tfis2 7836 . 2 (𝑥 ∈ On → (𝜑𝜓))
109com12 32 1 (𝜑 → (𝑥 ∈ On → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3045  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator