| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tfis2d | Structured version Visualization version GIF version | ||
| Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.) |
| Ref | Expression |
|---|---|
| tfis2d.1 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| tfis2d.2 | ⊢ (𝜑 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) |
| Ref | Expression |
|---|---|
| tfis2d | ⊢ (𝜑 → (𝑥 ∈ On → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis2d.1 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 2 | 1 | com12 32 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 ↔ 𝜒))) |
| 3 | 2 | pm5.74d 273 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 4 | r19.21v 3165 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦 ∈ 𝑥 𝜒)) | |
| 5 | tfis2d.2 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) | |
| 6 | 5 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ On → (𝜑 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) |
| 7 | 6 | a2d 29 | . . . 4 ⊢ (𝑥 ∈ On → ((𝜑 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜑 → 𝜓))) |
| 8 | 4, 7 | biimtrid 242 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (𝜑 → 𝜒) → (𝜑 → 𝜓))) |
| 9 | 3, 8 | tfis2 7852 | . 2 ⊢ (𝑥 ∈ On → (𝜑 → 𝜓)) |
| 10 | 9 | com12 32 | 1 ⊢ (𝜑 → (𝑥 ∈ On → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∀wral 3051 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |