Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tfis2d | Structured version Visualization version GIF version |
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.) |
Ref | Expression |
---|---|
tfis2d.1 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
tfis2d.2 | ⊢ (𝜑 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) |
Ref | Expression |
---|---|
tfis2d | ⊢ (𝜑 → (𝑥 ∈ On → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfis2d.1 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
2 | 1 | com12 32 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 ↔ 𝜒))) |
3 | 2 | pm5.74d 272 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
4 | r19.21v 3100 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦 ∈ 𝑥 𝜒)) | |
5 | tfis2d.2 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) | |
6 | 5 | com12 32 | . . . . 5 ⊢ (𝑥 ∈ On → (𝜑 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜓))) |
7 | 6 | a2d 29 | . . . 4 ⊢ (𝑥 ∈ On → ((𝜑 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜑 → 𝜓))) |
8 | 4, 7 | syl5bi 241 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (𝜑 → 𝜒) → (𝜑 → 𝜓))) |
9 | 3, 8 | tfis2 7678 | . 2 ⊢ (𝑥 ∈ On → (𝜑 → 𝜓)) |
10 | 9 | com12 32 | 1 ⊢ (𝜑 → (𝑥 ∈ On → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∀wral 3063 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |