Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfis2d Structured version   Visualization version   GIF version

Theorem tfis2d 47980
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by Emmett Weisz, 3-May-2020.)
Hypotheses
Ref Expression
tfis2d.1 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
tfis2d.2 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))
Assertion
Ref Expression
tfis2d (𝜑 → (𝑥 ∈ On → 𝜓))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜒,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem tfis2d
StepHypRef Expression
1 tfis2d.1 . . . . 5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
21com12 32 . . . 4 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
32pm5.74d 273 . . 3 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
4 r19.21v 3173 . . . 4 (∀𝑦𝑥 (𝜑𝜒) ↔ (𝜑 → ∀𝑦𝑥 𝜒))
5 tfis2d.2 . . . . . 6 (𝜑 → (𝑥 ∈ On → (∀𝑦𝑥 𝜒𝜓)))
65com12 32 . . . . 5 (𝑥 ∈ On → (𝜑 → (∀𝑦𝑥 𝜒𝜓)))
76a2d 29 . . . 4 (𝑥 ∈ On → ((𝜑 → ∀𝑦𝑥 𝜒) → (𝜑𝜓)))
84, 7biimtrid 241 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 (𝜑𝜒) → (𝜑𝜓)))
93, 8tfis2 7842 . 2 (𝑥 ∈ On → (𝜑𝜓))
109com12 32 1 (𝜑 → (𝑥 ∈ On → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  wral 3055  Oncon0 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6360  df-on 6361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator