Proof of Theorem setrec1lem4
Step | Hyp | Ref
| Expression |
1 | | setrec1lem4.1 |
. . 3
⊢
Ⅎ𝑧𝜑 |
2 | | id 22 |
. . . . . . . 8
⊢ (𝑤 ⊆ 𝑋 → 𝑤 ⊆ 𝑋) |
3 | | ssun1 4077 |
. . . . . . . 8
⊢ 𝑋 ⊆ (𝑋 ∪ (𝐹‘𝐴)) |
4 | 2, 3 | sstrdi 3904 |
. . . . . . 7
⊢ (𝑤 ⊆ 𝑋 → 𝑤 ⊆ (𝑋 ∪ (𝐹‘𝐴))) |
5 | 4 | imim1i 63 |
. . . . . 6
⊢ ((𝑤 ⊆ (𝑋 ∪ (𝐹‘𝐴)) → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
6 | 5 | alimi 1813 |
. . . . 5
⊢
(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹‘𝐴)) → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → ∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
7 | | setrec1lem4.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝑌) |
8 | | setrec1lem4.2 |
. . . . . . . . 9
⊢ 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
9 | 8, 7 | setrec1lem1 45608 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑋 ⊆ 𝑧))) |
10 | 7, 9 | mpbid 235 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑋 ⊆ 𝑧)) |
11 | | sp 2180 |
. . . . . . 7
⊢
(∀𝑧(∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑋 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑋 ⊆ 𝑧)) |
12 | 10, 11 | syl 17 |
. . . . . 6
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑋 ⊆ 𝑧)) |
13 | | setrec1lem4.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
14 | | sstr2 3899 |
. . . . . . . . 9
⊢ (𝐴 ⊆ 𝑋 → (𝑋 ⊆ 𝑧 → 𝐴 ⊆ 𝑧)) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ⊆ 𝑧 → 𝐴 ⊆ 𝑧)) |
16 | 12, 15 | syld 47 |
. . . . . . 7
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝐴 ⊆ 𝑧)) |
17 | | setrec1lem4.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ V) |
18 | | sseq1 3917 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
19 | | sseq1 3917 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝑧 ↔ 𝐴 ⊆ 𝑧)) |
20 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐴 → (𝐹‘𝑤) = (𝐹‘𝐴)) |
21 | 20 | sseq1d 3923 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐴 → ((𝐹‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝐴) ⊆ 𝑧)) |
22 | 19, 21 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧) ↔ (𝐴 ⊆ 𝑧 → (𝐹‘𝐴) ⊆ 𝑧))) |
23 | 18, 22 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) ↔ (𝐴 ⊆ 𝑋 → (𝐴 ⊆ 𝑧 → (𝐹‘𝐴) ⊆ 𝑧)))) |
24 | 17, 23 | spcdvw 45600 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝐴 ⊆ 𝑋 → (𝐴 ⊆ 𝑧 → (𝐹‘𝐴) ⊆ 𝑧)))) |
25 | 13, 24 | mpid 44 |
. . . . . . 7
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝐴 ⊆ 𝑧 → (𝐹‘𝐴) ⊆ 𝑧))) |
26 | 16, 25 | mpdd 43 |
. . . . . 6
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝐹‘𝐴) ⊆ 𝑧)) |
27 | 12, 26 | jcad 516 |
. . . . 5
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ 𝑋 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑋 ⊆ 𝑧 ∧ (𝐹‘𝐴) ⊆ 𝑧))) |
28 | 6, 27 | syl5 34 |
. . . 4
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹‘𝐴)) → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑋 ⊆ 𝑧 ∧ (𝐹‘𝐴) ⊆ 𝑧))) |
29 | | unss 4089 |
. . . 4
⊢ ((𝑋 ⊆ 𝑧 ∧ (𝐹‘𝐴) ⊆ 𝑧) ↔ (𝑋 ∪ (𝐹‘𝐴)) ⊆ 𝑧) |
30 | 28, 29 | syl6ib 254 |
. . 3
⊢ (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹‘𝐴)) → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹‘𝐴)) ⊆ 𝑧)) |
31 | 1, 30 | alrimi 2211 |
. 2
⊢ (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹‘𝐴)) → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹‘𝐴)) ⊆ 𝑧)) |
32 | | fvex 6671 |
. . . 4
⊢ (𝐹‘𝐴) ∈ V |
33 | | unexg 7470 |
. . . 4
⊢ ((𝑋 ∈ 𝑌 ∧ (𝐹‘𝐴) ∈ V) → (𝑋 ∪ (𝐹‘𝐴)) ∈ V) |
34 | 7, 32, 33 | sylancl 589 |
. . 3
⊢ (𝜑 → (𝑋 ∪ (𝐹‘𝐴)) ∈ V) |
35 | 8, 34 | setrec1lem1 45608 |
. 2
⊢ (𝜑 → ((𝑋 ∪ (𝐹‘𝐴)) ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹‘𝐴)) → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹‘𝐴)) ⊆ 𝑧))) |
36 | 31, 35 | mpbird 260 |
1
⊢ (𝜑 → (𝑋 ∪ (𝐹‘𝐴)) ∈ 𝑌) |