Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem4 Structured version   Visualization version   GIF version

Theorem setrec1lem4 47688
Description: Lemma for setrec1 47689. If 𝑋 is recursively generated by 𝐹, then so is 𝑋 ∪ (𝐹𝐴).

In the proof of setrec1 47689, the following is substituted for this theorem's 𝜑: (𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) Therefore, we cannot declare 𝑧 to be a distinct variable from 𝜑, since we need it to appear as a bound variable in 𝜑. This theorem can be proven without the hypothesis 𝑧𝜑, but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi 1837, making the antecedent of each line something more complicated than 𝜑. The proof of setrec1lem2 47686 could similarly be made easier to read by adding the hypothesis 𝑧𝜑, but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020.) (New usage is discouraged.)

Hypotheses
Ref Expression
setrec1lem4.1 𝑧𝜑
setrec1lem4.2 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem4.3 (𝜑𝐴 ∈ V)
setrec1lem4.4 (𝜑𝐴𝑋)
setrec1lem4.5 (𝜑𝑋𝑌)
Assertion
Ref Expression
setrec1lem4 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐹,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem4
StepHypRef Expression
1 setrec1lem4.1 . . 3 𝑧𝜑
2 id 22 . . . . . . . 8 (𝑤𝑋𝑤𝑋)
3 ssun1 4171 . . . . . . . 8 𝑋 ⊆ (𝑋 ∪ (𝐹𝐴))
42, 3sstrdi 3993 . . . . . . 7 (𝑤𝑋𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)))
54imim1i 63 . . . . . 6 ((𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
65alimi 1813 . . . . 5 (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → ∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
7 setrec1lem4.5 . . . . . . . 8 (𝜑𝑋𝑌)
8 setrec1lem4.2 . . . . . . . . 9 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
98, 7setrec1lem1 47685 . . . . . . . 8 (𝜑 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
107, 9mpbid 231 . . . . . . 7 (𝜑 → ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
11 sp 2176 . . . . . . 7 (∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧) → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
1210, 11syl 17 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
13 setrec1lem4.4 . . . . . . . . 9 (𝜑𝐴𝑋)
14 sstr2 3988 . . . . . . . . 9 (𝐴𝑋 → (𝑋𝑧𝐴𝑧))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑧𝐴𝑧))
1612, 15syld 47 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝐴𝑧))
17 setrec1lem4.3 . . . . . . . . 9 (𝜑𝐴 ∈ V)
18 sseq1 4006 . . . . . . . . . 10 (𝑤 = 𝐴 → (𝑤𝑋𝐴𝑋))
19 sseq1 4006 . . . . . . . . . . 11 (𝑤 = 𝐴 → (𝑤𝑧𝐴𝑧))
20 fveq2 6888 . . . . . . . . . . . 12 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
2120sseq1d 4012 . . . . . . . . . . 11 (𝑤 = 𝐴 → ((𝐹𝑤) ⊆ 𝑧 ↔ (𝐹𝐴) ⊆ 𝑧))
2219, 21imbi12d 344 . . . . . . . . . 10 (𝑤 = 𝐴 → ((𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧) ↔ (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2318, 22imbi12d 344 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2417, 23spcdvw 47677 . . . . . . . 8 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2513, 24mpid 44 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2616, 25mpdd 43 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐹𝐴) ⊆ 𝑧))
2712, 26jcad 513 . . . . 5 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
286, 27syl5 34 . . . 4 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
29 unss 4183 . . . 4 ((𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧) ↔ (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)
3028, 29imbitrdi 250 . . 3 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
311, 30alrimi 2206 . 2 (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
32 fvex 6901 . . . 4 (𝐹𝐴) ∈ V
33 unexg 7732 . . . 4 ((𝑋𝑌 ∧ (𝐹𝐴) ∈ V) → (𝑋 ∪ (𝐹𝐴)) ∈ V)
347, 32, 33sylancl 586 . . 3 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ V)
358, 34setrec1lem1 47685 . 2 (𝜑 → ((𝑋 ∪ (𝐹𝐴)) ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)))
3631, 35mpbird 256 1 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wnf 1785  wcel 2106  {cab 2709  Vcvv 3474  cun 3945  wss 3947  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548
This theorem is referenced by:  setrec1  47689
  Copyright terms: Public domain W3C validator