Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem4 Structured version   Visualization version   GIF version

Theorem setrec1lem4 44721
Description: Lemma for setrec1 44722. If 𝑋 is recursively generated by 𝐹, then so is 𝑋 ∪ (𝐹𝐴).

In the proof of setrec1 44722, the following is substituted for this theorem's 𝜑: (𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) Therefore, we cannot declare 𝑧 to be a distinct variable from 𝜑, since we need it to appear as a bound variable in 𝜑. This theorem can be proven without the hypothesis 𝑧𝜑, but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi 1826, making the antecedent of each line something more complicated than 𝜑. The proof of setrec1lem2 44719 could similarly be made easier to read by adding the hypothesis 𝑧𝜑, but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020.) (New usage is discouraged.)

Hypotheses
Ref Expression
setrec1lem4.1 𝑧𝜑
setrec1lem4.2 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem4.3 (𝜑𝐴 ∈ V)
setrec1lem4.4 (𝜑𝐴𝑋)
setrec1lem4.5 (𝜑𝑋𝑌)
Assertion
Ref Expression
setrec1lem4 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐹,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem4
StepHypRef Expression
1 setrec1lem4.1 . . 3 𝑧𝜑
2 id 22 . . . . . . . 8 (𝑤𝑋𝑤𝑋)
3 ssun1 4145 . . . . . . . 8 𝑋 ⊆ (𝑋 ∪ (𝐹𝐴))
42, 3sstrdi 3976 . . . . . . 7 (𝑤𝑋𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)))
54imim1i 63 . . . . . 6 ((𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
65alimi 1803 . . . . 5 (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → ∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
7 setrec1lem4.5 . . . . . . . 8 (𝜑𝑋𝑌)
8 setrec1lem4.2 . . . . . . . . 9 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
98, 7setrec1lem1 44718 . . . . . . . 8 (𝜑 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
107, 9mpbid 233 . . . . . . 7 (𝜑 → ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
11 sp 2172 . . . . . . 7 (∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧) → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
1210, 11syl 17 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
13 setrec1lem4.4 . . . . . . . . 9 (𝜑𝐴𝑋)
14 sstr2 3971 . . . . . . . . 9 (𝐴𝑋 → (𝑋𝑧𝐴𝑧))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑧𝐴𝑧))
1612, 15syld 47 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝐴𝑧))
17 setrec1lem4.3 . . . . . . . . 9 (𝜑𝐴 ∈ V)
18 sseq1 3989 . . . . . . . . . 10 (𝑤 = 𝐴 → (𝑤𝑋𝐴𝑋))
19 sseq1 3989 . . . . . . . . . . 11 (𝑤 = 𝐴 → (𝑤𝑧𝐴𝑧))
20 fveq2 6663 . . . . . . . . . . . 12 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
2120sseq1d 3995 . . . . . . . . . . 11 (𝑤 = 𝐴 → ((𝐹𝑤) ⊆ 𝑧 ↔ (𝐹𝐴) ⊆ 𝑧))
2219, 21imbi12d 346 . . . . . . . . . 10 (𝑤 = 𝐴 → ((𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧) ↔ (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2318, 22imbi12d 346 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2417, 23spcdvw 44710 . . . . . . . 8 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2513, 24mpid 44 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2616, 25mpdd 43 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐹𝐴) ⊆ 𝑧))
2712, 26jcad 513 . . . . 5 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
286, 27syl5 34 . . . 4 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
29 unss 4157 . . . 4 ((𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧) ↔ (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)
3028, 29syl6ib 252 . . 3 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
311, 30alrimi 2203 . 2 (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
32 fvex 6676 . . . 4 (𝐹𝐴) ∈ V
33 unexg 7461 . . . 4 ((𝑋𝑌 ∧ (𝐹𝐴) ∈ V) → (𝑋 ∪ (𝐹𝐴)) ∈ V)
347, 32, 33sylancl 586 . . 3 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ V)
358, 34setrec1lem1 44718 . 2 (𝜑 → ((𝑋 ∪ (𝐹𝐴)) ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)))
3631, 35mpbird 258 1 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1526   = wceq 1528  wnf 1775  wcel 2105  {cab 2796  Vcvv 3492  cun 3931  wss 3933  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356
This theorem is referenced by:  setrec1  44722
  Copyright terms: Public domain W3C validator