Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec1lem4 Structured version   Visualization version   GIF version

Theorem setrec1lem4 48782
Description: Lemma for setrec1 48783. If 𝑋 is recursively generated by 𝐹, then so is 𝑋 ∪ (𝐹𝐴).

In the proof of setrec1 48783, the following is substituted for this theorem's 𝜑: (𝜑 ∧ (𝐴𝑥𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤 (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)})) Therefore, we cannot declare 𝑧 to be a distinct variable from 𝜑, since we need it to appear as a bound variable in 𝜑. This theorem can be proven without the hypothesis 𝑧𝜑, but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi 1833, making the antecedent of each line something more complicated than 𝜑. The proof of setrec1lem2 48780 could similarly be made easier to read by adding the hypothesis 𝑧𝜑, but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020.) (New usage is discouraged.)

Hypotheses
Ref Expression
setrec1lem4.1 𝑧𝜑
setrec1lem4.2 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
setrec1lem4.3 (𝜑𝐴 ∈ V)
setrec1lem4.4 (𝜑𝐴𝑋)
setrec1lem4.5 (𝜑𝑋𝑌)
Assertion
Ref Expression
setrec1lem4 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
Distinct variable groups:   𝑦,𝑤,𝑧,𝐴   𝑤,𝐹,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑤)   𝑌(𝑦,𝑧,𝑤)

Proof of Theorem setrec1lem4
StepHypRef Expression
1 setrec1lem4.1 . . 3 𝑧𝜑
2 id 22 . . . . . . . 8 (𝑤𝑋𝑤𝑋)
3 ssun1 4201 . . . . . . . 8 𝑋 ⊆ (𝑋 ∪ (𝐹𝐴))
42, 3sstrdi 4021 . . . . . . 7 (𝑤𝑋𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)))
54imim1i 63 . . . . . 6 ((𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
65alimi 1809 . . . . 5 (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → ∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
7 setrec1lem4.5 . . . . . . . 8 (𝜑𝑋𝑌)
8 setrec1lem4.2 . . . . . . . . 9 𝑌 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
98, 7setrec1lem1 48779 . . . . . . . 8 (𝜑 → (𝑋𝑌 ↔ ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧)))
107, 9mpbid 232 . . . . . . 7 (𝜑 → ∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
11 sp 2184 . . . . . . 7 (∀𝑧(∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧) → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
1210, 11syl 17 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑋𝑧))
13 setrec1lem4.4 . . . . . . . . 9 (𝜑𝐴𝑋)
14 sstr2 4015 . . . . . . . . 9 (𝐴𝑋 → (𝑋𝑧𝐴𝑧))
1513, 14syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑧𝐴𝑧))
1612, 15syld 47 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝐴𝑧))
17 setrec1lem4.3 . . . . . . . . 9 (𝜑𝐴 ∈ V)
18 sseq1 4034 . . . . . . . . . 10 (𝑤 = 𝐴 → (𝑤𝑋𝐴𝑋))
19 sseq1 4034 . . . . . . . . . . 11 (𝑤 = 𝐴 → (𝑤𝑧𝐴𝑧))
20 fveq2 6920 . . . . . . . . . . . 12 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
2120sseq1d 4040 . . . . . . . . . . 11 (𝑤 = 𝐴 → ((𝐹𝑤) ⊆ 𝑧 ↔ (𝐹𝐴) ⊆ 𝑧))
2219, 21imbi12d 344 . . . . . . . . . 10 (𝑤 = 𝐴 → ((𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧) ↔ (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2318, 22imbi12d 344 . . . . . . . . 9 (𝑤 = 𝐴 → ((𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2417, 23spcdvw 48771 . . . . . . . 8 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑋 → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧))))
2513, 24mpid 44 . . . . . . 7 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐴𝑧 → (𝐹𝐴) ⊆ 𝑧)))
2616, 25mpdd 43 . . . . . 6 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝐹𝐴) ⊆ 𝑧))
2712, 26jcad 512 . . . . 5 (𝜑 → (∀𝑤(𝑤𝑋 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
286, 27syl5 34 . . . 4 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧)))
29 unss 4213 . . . 4 ((𝑋𝑧 ∧ (𝐹𝐴) ⊆ 𝑧) ↔ (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)
3028, 29imbitrdi 251 . . 3 (𝜑 → (∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
311, 30alrimi 2214 . 2 (𝜑 → ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧))
32 fvex 6933 . . . 4 (𝐹𝐴) ∈ V
33 unexg 7778 . . . 4 ((𝑋𝑌 ∧ (𝐹𝐴) ∈ V) → (𝑋 ∪ (𝐹𝐴)) ∈ V)
347, 32, 33sylancl 585 . . 3 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ V)
358, 34setrec1lem1 48779 . 2 (𝜑 → ((𝑋 ∪ (𝐹𝐴)) ∈ 𝑌 ↔ ∀𝑧(∀𝑤(𝑤 ⊆ (𝑋 ∪ (𝐹𝐴)) → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → (𝑋 ∪ (𝐹𝐴)) ⊆ 𝑧)))
3631, 35mpbird 257 1 (𝜑 → (𝑋 ∪ (𝐹𝐴)) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wnf 1781  wcel 2108  {cab 2717  Vcvv 3488  cun 3974  wss 3976  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581
This theorem is referenced by:  setrec1  48783
  Copyright terms: Public domain W3C validator