Step | Hyp | Ref
| Expression |
1 | | axacndlem4 10366 |
. . . 4
⊢
∃𝑥∀𝑣∀𝑧(∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) |
2 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 |
3 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑥 |
4 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑤 |
5 | 2, 3, 4 | nf3an 1904 |
. . . . 5
⊢
Ⅎ𝑥(¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) |
6 | | nfnae 2434 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑦 𝑦 = 𝑧 |
7 | | nfnae 2434 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑦 𝑦 = 𝑥 |
8 | | nfnae 2434 |
. . . . . . 7
⊢
Ⅎ𝑦 ¬
∀𝑦 𝑦 = 𝑤 |
9 | 6, 7, 8 | nf3an 1904 |
. . . . . 6
⊢
Ⅎ𝑦(¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) |
10 | | nfnae 2434 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑦 𝑦 = 𝑧 |
11 | | nfnae 2434 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑦 𝑦 = 𝑥 |
12 | | nfnae 2434 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑦 𝑦 = 𝑤 |
13 | 10, 11, 12 | nf3an 1904 |
. . . . . . 7
⊢
Ⅎ𝑧(¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) |
14 | | nfcvd 2908 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦𝑣) |
15 | | nfcvf 2936 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝑧) |
16 | 15 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦𝑧) |
17 | 14, 16 | nfeld 2918 |
. . . . . . . . . 10
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦 𝑣 ∈ 𝑧) |
18 | | nfcvf 2936 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑦 𝑦 = 𝑤 → Ⅎ𝑦𝑤) |
19 | 18 | 3ad2ant3 1134 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦𝑤) |
20 | 16, 19 | nfeld 2918 |
. . . . . . . . . 10
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦 𝑧 ∈ 𝑤) |
21 | 17, 20 | nfand 1900 |
. . . . . . . . 9
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) |
22 | 5, 21 | nfald 2322 |
. . . . . . . 8
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) |
23 | | nfnae 2434 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑦 𝑦 = 𝑧 |
24 | | nfnae 2434 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑦 𝑦 = 𝑥 |
25 | | nfnae 2434 |
. . . . . . . . . 10
⊢
Ⅎ𝑤 ¬
∀𝑦 𝑦 = 𝑤 |
26 | 23, 24, 25 | nf3an 1904 |
. . . . . . . . 9
⊢
Ⅎ𝑤(¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) |
27 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑣(¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) |
28 | 14, 19 | nfeld 2918 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦 𝑣 ∈ 𝑤) |
29 | | nfcvf 2936 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦𝑥) |
30 | 29 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦𝑥) |
31 | 19, 30 | nfeld 2918 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦 𝑤 ∈ 𝑥) |
32 | 28, 31 | nfand 1900 |
. . . . . . . . . . . . 13
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦(𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) |
33 | 21, 32 | nfand 1900 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
34 | 26, 33 | nfexd 2323 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
35 | 14, 19 | nfeqd 2917 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦 𝑣 = 𝑤) |
36 | 34, 35 | nfbid 1905 |
. . . . . . . . . 10
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) |
37 | 27, 36 | nfald 2322 |
. . . . . . . . 9
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) |
38 | 26, 37 | nfexd 2323 |
. . . . . . . 8
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) |
39 | 22, 38 | nfimd 1897 |
. . . . . . 7
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦(∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤))) |
40 | 13, 39 | nfald 2322 |
. . . . . 6
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑦∀𝑧(∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤))) |
41 | | nfcvd 2908 |
. . . . . . . . . 10
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑧𝑣) |
42 | | nfcvf2 2937 |
. . . . . . . . . . 11
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧𝑦) |
43 | 42 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑧𝑦) |
44 | 41, 43 | nfeqd 2917 |
. . . . . . . . 9
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑧 𝑣 = 𝑦) |
45 | 13, 44 | nfan1 2193 |
. . . . . . . 8
⊢
Ⅎ𝑧((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) |
46 | | nfcvd 2908 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑥𝑣) |
47 | | nfcvf2 2937 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑦 𝑦 = 𝑥 → Ⅎ𝑥𝑦) |
48 | 47 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑥𝑦) |
49 | 46, 48 | nfeqd 2917 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑥 𝑣 = 𝑦) |
50 | 5, 49 | nfan1 2193 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) |
51 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → 𝑣 = 𝑦) |
52 | 51 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (𝑣 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
53 | 52 | anbi1d 630 |
. . . . . . . . . 10
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → ((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) |
54 | 50, 53 | albid 2215 |
. . . . . . . . 9
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ↔ ∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) |
55 | | nfcvd 2908 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑤𝑣) |
56 | | nfcvf2 2937 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
∀𝑦 𝑦 = 𝑤 → Ⅎ𝑤𝑦) |
57 | 56 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑤𝑦) |
58 | 55, 57 | nfeqd 2917 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → Ⅎ𝑤 𝑣 = 𝑦) |
59 | 26, 58 | nfan1 2193 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) |
60 | 51 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (𝑣 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤)) |
61 | 60 | anbi1d 630 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → ((𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) ↔ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥))) |
62 | 53, 61 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
63 | 59, 62 | exbid 2216 |
. . . . . . . . . . . . . 14
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ ∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)))) |
64 | 51 | eqeq1d 2740 |
. . . . . . . . . . . . . 14
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (𝑣 = 𝑤 ↔ 𝑦 = 𝑤)) |
65 | 63, 64 | bibi12d 346 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → ((∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤) ↔ (∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
66 | 65 | ex 413 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → (𝑣 = 𝑦 → ((∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤) ↔ (∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
67 | 9, 36, 66 | cbvald 2407 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → (∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤) ↔ ∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
68 | 26, 67 | exbid 2216 |
. . . . . . . . . 10
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → (∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤) ↔ ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
69 | 68 | adantr 481 |
. . . . . . . . 9
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤) ↔ ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
70 | 54, 69 | imbi12d 345 |
. . . . . . . 8
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → ((∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) ↔ (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
71 | 45, 70 | albid 2215 |
. . . . . . 7
⊢ (((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) ∧ 𝑣 = 𝑦) → (∀𝑧(∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) ↔ ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
72 | 71 | ex 413 |
. . . . . 6
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → (𝑣 = 𝑦 → (∀𝑧(∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) ↔ ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))))) |
73 | 9, 40, 72 | cbvald 2407 |
. . . . 5
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → (∀𝑣∀𝑧(∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) ↔ ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
74 | 5, 73 | exbid 2216 |
. . . 4
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → (∃𝑥∀𝑣∀𝑧(∀𝑥(𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑣(∃𝑤((𝑣 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑣 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑣 = 𝑤)) ↔ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)))) |
75 | 1, 74 | mpbii 232 |
. . 3
⊢ ((¬
∀𝑦 𝑦 = 𝑧 ∧ ¬ ∀𝑦 𝑦 = 𝑥 ∧ ¬ ∀𝑦 𝑦 = 𝑤) → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
76 | 75 | 3exp 1118 |
. 2
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑤 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))))) |
77 | | axacndlem3 10365 |
. 2
⊢
(∀𝑦 𝑦 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
78 | | axacndlem1 10363 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
79 | 78 | aecoms 2428 |
. 2
⊢
(∀𝑦 𝑦 = 𝑥 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
80 | | nfae 2433 |
. . . . 5
⊢
Ⅎ𝑧∀𝑦 𝑦 = 𝑤 |
81 | | en2lp 9364 |
. . . . . . . . 9
⊢ ¬
(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦) |
82 | | elequ2 2121 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤)) |
83 | 82 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑦) ↔ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤))) |
84 | 81, 83 | mtbii 326 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → ¬ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) |
85 | 84 | sps 2178 |
. . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑤 → ¬ (𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤)) |
86 | 85 | pm2.21d 121 |
. . . . . 6
⊢
(∀𝑦 𝑦 = 𝑤 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
87 | 86 | spsd 2180 |
. . . . 5
⊢
(∀𝑦 𝑦 = 𝑤 → (∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
88 | 80, 87 | alrimi 2206 |
. . . 4
⊢
(∀𝑦 𝑦 = 𝑤 → ∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
89 | 88 | axc4i 2316 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑤 → ∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
90 | 89 | 19.8ad 2175 |
. 2
⊢
(∀𝑦 𝑦 = 𝑤 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) |
91 | 76, 77, 79, 90 | pm2.61iii 185 |
1
⊢
∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) |