Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimxrneun Structured version   Visualization version   GIF version

Theorem pimxrneun 45477
Description: The preimage of a set of extended reals that does not contain a value 𝐶 is the union of the preimage of the elements smaller than 𝐶 and the preimage of the subset of elements larger than 𝐶. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
pimxrneun.1 𝑥𝜑
pimxrneun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
pimxrneun.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
Assertion
Ref Expression
pimxrneun (𝜑 → {𝑥𝐴𝐵𝐶} = ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))

Proof of Theorem pimxrneun
StepHypRef Expression
1 pimxrneun.1 . . 3 𝑥𝜑
2 nfrab1 3415 . . . 4 𝑥{𝑥𝐴𝐵 < 𝐶}
3 nfrab1 3415 . . . 4 𝑥{𝑥𝐴𝐶 < 𝐵}
42, 3nfun 4121 . . 3 𝑥({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵})
5 simpl 482 . . . . . . . . 9 ((𝑥𝐴𝐵 < 𝐶) → 𝑥𝐴)
6 simpr 484 . . . . . . . . 9 ((𝑥𝐴𝐵 < 𝐶) → 𝐵 < 𝐶)
75, 6jca 511 . . . . . . . 8 ((𝑥𝐴𝐵 < 𝐶) → (𝑥𝐴𝐵 < 𝐶))
8 rabid 3416 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} ↔ (𝑥𝐴𝐵 < 𝐶))
97, 8sylibr 234 . . . . . . 7 ((𝑥𝐴𝐵 < 𝐶) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
109adantll 714 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
11 elun1 4133 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
1210, 11syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
13123adantl3 1169 . . . 4 (((𝜑𝑥𝐴𝐵𝐶) ∧ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
14 3simpa 1148 . . . . . 6 ((𝜑𝑥𝐴𝐵𝐶) → (𝜑𝑥𝐴))
1514adantr 480 . . . . 5 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → (𝜑𝑥𝐴))
16 pimxrneun.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
1716adantr 480 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
18173adantl3 1169 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
19 pimxrneun.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
2019adantr 480 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
21203adantl3 1169 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
22 simpr 484 . . . . . . 7 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → ¬ 𝐵 < 𝐶)
2318, 21, 22xrnltled 11184 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
24 necom 2978 . . . . . . . . 9 (𝐵𝐶𝐶𝐵)
2524biimpi 216 . . . . . . . 8 (𝐵𝐶𝐶𝐵)
2625adantr 480 . . . . . . 7 ((𝐵𝐶 ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
27263ad2antl3 1188 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
2818, 21, 23, 27xrleneltd 45313 . . . . 5 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶 < 𝐵)
29 id 22 . . . . . . . 8 ((𝑥𝐴𝐶 < 𝐵) → (𝑥𝐴𝐶 < 𝐵))
3029adantll 714 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → (𝑥𝐴𝐶 < 𝐵))
31 rabid 3416 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} ↔ (𝑥𝐴𝐶 < 𝐵))
3230, 31sylibr 234 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝑥 ∈ {𝑥𝐴𝐶 < 𝐵})
33 elun2 4134 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3432, 33syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3515, 28, 34syl2anc 584 . . . 4 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3613, 35pm2.61dan 812 . . 3 ((𝜑𝑥𝐴𝐵𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
371, 4, 36rabssd 45130 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3819adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
3916adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
40 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶)
4138, 39, 40xrltned 45347 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵𝐶)
4241ex 412 . . . 4 ((𝜑𝑥𝐴) → (𝐵 < 𝐶𝐵𝐶))
431, 42ss2rabdf 45138 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ⊆ {𝑥𝐴𝐵𝐶})
4416adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ*)
4519adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ*)
46 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵)
4744, 45, 46xrgtned 45312 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐵𝐶)
4847ex 412 . . . 4 ((𝜑𝑥𝐴) → (𝐶 < 𝐵𝐵𝐶))
491, 48ss2rabdf 45138 . . 3 (𝜑 → {𝑥𝐴𝐶 < 𝐵} ⊆ {𝑥𝐴𝐵𝐶})
5043, 49unssd 4143 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}) ⊆ {𝑥𝐴𝐵𝐶})
5137, 50eqssd 3953 1 (𝜑 → {𝑥𝐴𝐵𝐶} = ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2925  {crab 3394  cun 3901   class class class wbr 5092  *cxr 11148   < clt 11149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155
This theorem is referenced by:  smfdmmblpimne  46828  smfpimne  46830
  Copyright terms: Public domain W3C validator