Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimxrneun Structured version   Visualization version   GIF version

Theorem pimxrneun 45456
Description: The preimage of a set of extended reals that does not contain a value 𝐶 is the union of the preimage of the elements smaller than 𝐶 and the preimage of the subset of elements larger than 𝐶. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
pimxrneun.1 𝑥𝜑
pimxrneun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
pimxrneun.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
Assertion
Ref Expression
pimxrneun (𝜑 → {𝑥𝐴𝐵𝐶} = ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))

Proof of Theorem pimxrneun
StepHypRef Expression
1 pimxrneun.1 . . 3 𝑥𝜑
2 nfrab1 3440 . . . 4 𝑥{𝑥𝐴𝐵 < 𝐶}
3 nfrab1 3440 . . . 4 𝑥{𝑥𝐴𝐶 < 𝐵}
42, 3nfun 4150 . . 3 𝑥({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵})
5 simpl 482 . . . . . . . . 9 ((𝑥𝐴𝐵 < 𝐶) → 𝑥𝐴)
6 simpr 484 . . . . . . . . 9 ((𝑥𝐴𝐵 < 𝐶) → 𝐵 < 𝐶)
75, 6jca 511 . . . . . . . 8 ((𝑥𝐴𝐵 < 𝐶) → (𝑥𝐴𝐵 < 𝐶))
8 rabid 3441 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} ↔ (𝑥𝐴𝐵 < 𝐶))
97, 8sylibr 234 . . . . . . 7 ((𝑥𝐴𝐵 < 𝐶) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
109adantll 714 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
11 elun1 4162 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
1210, 11syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
13123adantl3 1168 . . . 4 (((𝜑𝑥𝐴𝐵𝐶) ∧ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
14 3simpa 1148 . . . . . 6 ((𝜑𝑥𝐴𝐵𝐶) → (𝜑𝑥𝐴))
1514adantr 480 . . . . 5 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → (𝜑𝑥𝐴))
16 pimxrneun.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
1716adantr 480 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
18173adantl3 1168 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
19 pimxrneun.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
2019adantr 480 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
21203adantl3 1168 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
22 simpr 484 . . . . . . 7 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → ¬ 𝐵 < 𝐶)
2318, 21, 22xrnltled 11311 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
24 necom 2984 . . . . . . . . 9 (𝐵𝐶𝐶𝐵)
2524biimpi 216 . . . . . . . 8 (𝐵𝐶𝐶𝐵)
2625adantr 480 . . . . . . 7 ((𝐵𝐶 ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
27263ad2antl3 1187 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
2818, 21, 23, 27xrleneltd 45291 . . . . 5 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶 < 𝐵)
29 id 22 . . . . . . . 8 ((𝑥𝐴𝐶 < 𝐵) → (𝑥𝐴𝐶 < 𝐵))
3029adantll 714 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → (𝑥𝐴𝐶 < 𝐵))
31 rabid 3441 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} ↔ (𝑥𝐴𝐶 < 𝐵))
3230, 31sylibr 234 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝑥 ∈ {𝑥𝐴𝐶 < 𝐵})
33 elun2 4163 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3432, 33syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3515, 28, 34syl2anc 584 . . . 4 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3613, 35pm2.61dan 812 . . 3 ((𝜑𝑥𝐴𝐵𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
371, 4, 36rabssd 45104 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3819adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
3916adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
40 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶)
4138, 39, 40xrltned 45325 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵𝐶)
4241ex 412 . . . 4 ((𝜑𝑥𝐴) → (𝐵 < 𝐶𝐵𝐶))
431, 42ss2rabdf 45112 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ⊆ {𝑥𝐴𝐵𝐶})
4416adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ*)
4519adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ*)
46 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵)
4744, 45, 46xrgtned 45290 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐵𝐶)
4847ex 412 . . . 4 ((𝜑𝑥𝐴) → (𝐶 < 𝐵𝐵𝐶))
491, 48ss2rabdf 45112 . . 3 (𝜑 → {𝑥𝐴𝐶 < 𝐵} ⊆ {𝑥𝐴𝐵𝐶})
5043, 49unssd 4172 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}) ⊆ {𝑥𝐴𝐵𝐶})
5137, 50eqssd 3981 1 (𝜑 → {𝑥𝐴𝐵𝐶} = ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wnf 1782  wcel 2107  wne 2931  {crab 3419  cun 3929   class class class wbr 5123  *cxr 11276   < clt 11277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-pre-lttri 11211  ax-pre-lttrn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283
This theorem is referenced by:  smfdmmblpimne  46809  smfpimne  46811
  Copyright terms: Public domain W3C validator