Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimxrneun Structured version   Visualization version   GIF version

Theorem pimxrneun 43283
Description: The preimage of a set of extended reals that does not contain a value 𝐶 is the union of the preimage of the elements smaller than 𝐶 and the preimage of the subset of elements larger than 𝐶. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
pimxrneun.1 𝑥𝜑
pimxrneun.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
pimxrneun.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
Assertion
Ref Expression
pimxrneun (𝜑 → {𝑥𝐴𝐵𝐶} = ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))

Proof of Theorem pimxrneun
StepHypRef Expression
1 pimxrneun.1 . . 3 𝑥𝜑
2 nfrab1 3421 . . . 4 𝑥{𝑥𝐴𝐵 < 𝐶}
3 nfrab1 3421 . . . 4 𝑥{𝑥𝐴𝐶 < 𝐵}
42, 3nfun 4109 . . 3 𝑥({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵})
5 simpl 483 . . . . . . . . 9 ((𝑥𝐴𝐵 < 𝐶) → 𝑥𝐴)
6 simpr 485 . . . . . . . . 9 ((𝑥𝐴𝐵 < 𝐶) → 𝐵 < 𝐶)
75, 6jca 512 . . . . . . . 8 ((𝑥𝐴𝐵 < 𝐶) → (𝑥𝐴𝐵 < 𝐶))
8 rabid 3422 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} ↔ (𝑥𝐴𝐵 < 𝐶))
97, 8sylibr 233 . . . . . . 7 ((𝑥𝐴𝐵 < 𝐶) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
109adantll 711 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝑥 ∈ {𝑥𝐴𝐵 < 𝐶})
11 elun1 4120 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < 𝐶} → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
1210, 11syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
13123adantl3 1167 . . . 4 (((𝜑𝑥𝐴𝐵𝐶) ∧ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
14 3simpa 1147 . . . . . 6 ((𝜑𝑥𝐴𝐵𝐶) → (𝜑𝑥𝐴))
1514adantr 481 . . . . 5 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → (𝜑𝑥𝐴))
16 pimxrneun.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
1716adantr 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
18173adantl3 1167 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
19 pimxrneun.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
2019adantr 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
21203adantl3 1167 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
22 simpr 485 . . . . . . 7 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → ¬ 𝐵 < 𝐶)
2318, 21, 22xrnltled 11122 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
24 necom 2994 . . . . . . . . 9 (𝐵𝐶𝐶𝐵)
2524biimpi 215 . . . . . . . 8 (𝐵𝐶𝐶𝐵)
2625adantr 481 . . . . . . 7 ((𝐵𝐶 ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
27263ad2antl3 1186 . . . . . 6 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶𝐵)
2818, 21, 23, 27xrleneltd 43116 . . . . 5 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝐶 < 𝐵)
29 id 22 . . . . . . . 8 ((𝑥𝐴𝐶 < 𝐵) → (𝑥𝐴𝐶 < 𝐵))
3029adantll 711 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → (𝑥𝐴𝐶 < 𝐵))
31 rabid 3422 . . . . . . 7 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} ↔ (𝑥𝐴𝐶 < 𝐵))
3230, 31sylibr 233 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝑥 ∈ {𝑥𝐴𝐶 < 𝐵})
33 elun2 4121 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐶 < 𝐵} → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3432, 33syl 17 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3515, 28, 34syl2anc 584 . . . 4 (((𝜑𝑥𝐴𝐵𝐶) ∧ ¬ 𝐵 < 𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3613, 35pm2.61dan 810 . . 3 ((𝜑𝑥𝐴𝐵𝐶) → 𝑥 ∈ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
371, 4, 36rabssd 42931 . 2 (𝜑 → {𝑥𝐴𝐵𝐶} ⊆ ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
3819adantr 481 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵 ∈ ℝ*)
3916adantr 481 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
40 simpr 485 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶)
4138, 39, 40xrltned 43150 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐵 < 𝐶) → 𝐵𝐶)
4241ex 413 . . . 4 ((𝜑𝑥𝐴) → (𝐵 < 𝐶𝐵𝐶))
431, 42ss2rabdf 42944 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝐶} ⊆ {𝑥𝐴𝐵𝐶})
4416adantr 481 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐶 ∈ ℝ*)
4519adantr 481 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐵 ∈ ℝ*)
46 simpr 485 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐶 < 𝐵)
4744, 45, 46xrgtned 43115 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝐶 < 𝐵) → 𝐵𝐶)
4847ex 413 . . . 4 ((𝜑𝑥𝐴) → (𝐶 < 𝐵𝐵𝐶))
491, 48ss2rabdf 42944 . . 3 (𝜑 → {𝑥𝐴𝐶 < 𝐵} ⊆ {𝑥𝐴𝐵𝐶})
5043, 49unssd 4130 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}) ⊆ {𝑥𝐴𝐵𝐶})
5137, 50eqssd 3947 1 (𝜑 → {𝑥𝐴𝐵𝐶} = ({𝑥𝐴𝐵 < 𝐶} ∪ {𝑥𝐴𝐶 < 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1540  wnf 1784  wcel 2105  wne 2940  {crab 3403  cun 3894   class class class wbr 5086  *cxr 11087   < clt 11088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-pre-lttri 11024  ax-pre-lttrn 11025
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-po 5520  df-so 5521  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094
This theorem is referenced by:  smfdmmblpimne  44631  smfpimne  44633
  Copyright terms: Public domain W3C validator