Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrabf Structured version   Visualization version   GIF version

Theorem ssrabf 45236
Description: Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ssrabf.1 𝑥𝐵
ssrabf.2 𝑥𝐴
Assertion
Ref Expression
ssrabf (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))

Proof of Theorem ssrabf
StepHypRef Expression
1 df-rab 3397 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq2i 3960 . 2 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
3 ssrabf.1 . . 3 𝑥𝐵
43ssabf 45222 . 2 (𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
5 ssrabf.2 . . . . 5 𝑥𝐴
63, 5dfss3f 3922 . . . 4 (𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
76anbi1i 624 . . 3 ((𝐵𝐴 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
8 r19.26 3093 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
9 df-ral 3049 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
107, 8, 93bitr2ri 300 . 2 (∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
112, 4, 103bitri 297 1 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2113  {cab 2711  wnfc 2880  wral 3048  {crab 3396  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rab 3397  df-ss 3915
This theorem is referenced by:  ssrabdf  45237  supminfxr2  45592  pimgtmnf2  46837  smfmullem4  46917  smflimsuplem7  46949
  Copyright terms: Public domain W3C validator