![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrabf | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ssrabf.1 | ⊢ Ⅎ𝑥𝐵 |
ssrabf.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
ssrabf | ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3419 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | sseq2i 4006 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
3 | ssrabf.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | 3 | ssabf 44606 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
5 | ssrabf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
6 | 3, 5 | dfss3f 3968 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) |
7 | 6 | anbi1i 622 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
8 | r19.26 3100 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
9 | df-ral 3051 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
10 | 7, 8, 9 | 3bitr2ri 299 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
11 | 2, 4, 10 | 3bitri 296 | 1 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 ∈ wcel 2098 {cab 2702 Ⅎwnfc 2875 ∀wral 3050 {crab 3418 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rab 3419 df-ss 3961 |
This theorem is referenced by: ssrabdf 44621 supminfxr2 44989 pimgtmnf2 46240 smfmullem4 46320 smflimsuplem7 46352 |
Copyright terms: Public domain | W3C validator |