Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrabf Structured version   Visualization version   GIF version

Theorem ssrabf 42688
Description: Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ssrabf.1 𝑥𝐵
ssrabf.2 𝑥𝐴
Assertion
Ref Expression
ssrabf (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))

Proof of Theorem ssrabf
StepHypRef Expression
1 df-rab 3224 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq2i 3952 . 2 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
3 ssrabf.1 . . 3 𝑥𝐵
43ssabf 42674 . 2 (𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
5 ssrabf.2 . . . . 5 𝑥𝐴
63, 5dfss3f 3914 . . . 4 (𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
76anbi1i 623 . . 3 ((𝐵𝐴 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
8 r19.26 3108 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
9 df-ral 3060 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
107, 8, 93bitr2ri 299 . 2 (∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
112, 4, 103bitri 296 1 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1535  wcel 2101  {cab 2710  wnfc 2882  wral 3059  {crab 3221  wss 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rab 3224  df-v 3436  df-in 3896  df-ss 3906
This theorem is referenced by:  supminfxr2  43043  pimgtmnf2  44288  smfmullem4  44368  smflimsuplem7  44399
  Copyright terms: Public domain W3C validator