MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coss2 Structured version   Visualization version   GIF version

Theorem coss2 5870
Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
Assertion
Ref Expression
coss2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem coss2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5192 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑦𝑥𝐵𝑦))
21anim1d 611 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑦𝐶𝑧) → (𝑥𝐵𝑦𝑦𝐶𝑧)))
32eximdv 1915 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)))
43ssopab2dv 5561 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)})
5 df-co 5698 . 2 (𝐶𝐴) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐴𝑦𝑦𝐶𝑧)}
6 df-co 5698 . 2 (𝐶𝐵) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐵𝑦𝑦𝐶𝑧)}
74, 5, 63sstr4g 4041 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1776  wss 3963   class class class wbr 5148  {copab 5210  ccom 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ss 3980  df-br 5149  df-opab 5211  df-co 5698
This theorem is referenced by:  coeq2  5872  funss  6587  tposss  8251  dftpos4  8269  ttrclco  9756  frmin  9787  frrlem16  9796  rtrclreclem4  15097  tsrdir  18662  mvdco  19478  ustex2sym  24241  ustex3sym  24242  ustneism  24248  trust  24254  utop2nei  24275  neipcfilu  24321  fcoinver  32624  trclubgNEW  43608  trrelsuperrel2dg  43661
  Copyright terms: Public domain W3C validator