| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coss2 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| coss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5139 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | |
| 2 | 1 | anim1d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
| 3 | 2 | eximdv 1918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
| 4 | 3 | ssopab2dv 5496 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)}) |
| 5 | df-co 5630 | . 2 ⊢ (𝐶 ∘ 𝐴) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} | |
| 6 | df-co 5630 | . 2 ⊢ (𝐶 ∘ 𝐵) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)} | |
| 7 | 4, 5, 6 | 3sstr4g 3984 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ⊆ wss 3898 class class class wbr 5095 {copab 5157 ∘ ccom 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ss 3915 df-br 5096 df-opab 5158 df-co 5630 |
| This theorem is referenced by: coeq2 5804 funss 6508 tposss 8166 dftpos4 8184 ttrclco 9619 frmin 9653 frrlem16 9662 rtrclreclem4 14975 tsrdir 18518 mvdco 19365 ustex2sym 24152 ustex3sym 24153 ustneism 24159 trust 24164 utop2nei 24185 neipcfilu 24230 fcoinver 32605 trclubgNEW 43775 trrelsuperrel2dg 43828 |
| Copyright terms: Public domain | W3C validator |