| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coss2 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| coss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5186 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | |
| 2 | 1 | anim1d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
| 3 | 2 | eximdv 1916 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
| 4 | 3 | ssopab2dv 5555 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)}) |
| 5 | df-co 5693 | . 2 ⊢ (𝐶 ∘ 𝐴) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} | |
| 6 | df-co 5693 | . 2 ⊢ (𝐶 ∘ 𝐵) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)} | |
| 7 | 4, 5, 6 | 3sstr4g 4036 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ⊆ wss 3950 class class class wbr 5142 {copab 5204 ∘ ccom 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ss 3967 df-br 5143 df-opab 5205 df-co 5693 |
| This theorem is referenced by: coeq2 5868 funss 6584 tposss 8253 dftpos4 8271 ttrclco 9759 frmin 9790 frrlem16 9799 rtrclreclem4 15101 tsrdir 18650 mvdco 19464 ustex2sym 24226 ustex3sym 24227 ustneism 24233 trust 24239 utop2nei 24260 neipcfilu 24306 fcoinver 32618 trclubgNEW 43636 trrelsuperrel2dg 43689 |
| Copyright terms: Public domain | W3C validator |