![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coss2 | Structured version Visualization version GIF version |
Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
Ref | Expression |
---|---|
coss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5210 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | |
2 | 1 | anim1d 610 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
3 | 2 | eximdv 1916 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
4 | 3 | ssopab2dv 5570 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)}) |
5 | df-co 5709 | . 2 ⊢ (𝐶 ∘ 𝐴) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} | |
6 | df-co 5709 | . 2 ⊢ (𝐶 ∘ 𝐵) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)} | |
7 | 4, 5, 6 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ⊆ wss 3976 class class class wbr 5166 {copab 5228 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: coeq2 5883 funss 6597 tposss 8268 dftpos4 8286 ttrclco 9787 frmin 9818 frrlem16 9827 rtrclreclem4 15110 tsrdir 18674 mvdco 19487 ustex2sym 24246 ustex3sym 24247 ustneism 24253 trust 24259 utop2nei 24280 neipcfilu 24326 fcoinver 32626 trclubgNEW 43580 trrelsuperrel2dg 43633 |
Copyright terms: Public domain | W3C validator |