| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coss2 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| coss2 | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5168 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥𝐴𝑦 → 𝑥𝐵𝑦)) | |
| 2 | 1 | anim1d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → (𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
| 3 | 2 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧) → ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧))) |
| 4 | 3 | ssopab2dv 5531 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)}) |
| 5 | df-co 5668 | . 2 ⊢ (𝐶 ∘ 𝐴) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐴𝑦 ∧ 𝑦𝐶𝑧)} | |
| 6 | df-co 5668 | . 2 ⊢ (𝐶 ∘ 𝐵) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐶𝑧)} | |
| 7 | 4, 5, 6 | 3sstr4g 4017 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ⊆ wss 3931 class class class wbr 5124 {copab 5186 ∘ ccom 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ss 3948 df-br 5125 df-opab 5187 df-co 5668 |
| This theorem is referenced by: coeq2 5843 funss 6560 tposss 8231 dftpos4 8249 ttrclco 9737 frmin 9768 frrlem16 9777 rtrclreclem4 15085 tsrdir 18619 mvdco 19431 ustex2sym 24160 ustex3sym 24161 ustneism 24167 trust 24173 utop2nei 24194 neipcfilu 24239 fcoinver 32590 trclubgNEW 43617 trrelsuperrel2dg 43670 |
| Copyright terms: Public domain | W3C validator |