MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrelrn Structured version   Visualization version   GIF version

Theorem ssrelrn 5841
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.)
Assertion
Ref Expression
ssrelrn ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎𝐴 𝑎𝑅𝑌)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝑅,𝑎   𝑌,𝑎

Proof of Theorem ssrelrn
StepHypRef Expression
1 elrng 5838 . . . . 5 (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 ↔ ∃𝑎 𝑎𝑅𝑌))
2 ssbr 5139 . . . . . . . . . . 11 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌𝑎(𝐴 × 𝐵)𝑌))
3 brxp 5672 . . . . . . . . . . . 12 (𝑎(𝐴 × 𝐵)𝑌 ↔ (𝑎𝐴𝑌𝐵))
43simplbi 497 . . . . . . . . . . 11 (𝑎(𝐴 × 𝐵)𝑌𝑎𝐴)
52, 4syl6 35 . . . . . . . . . 10 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌𝑎𝐴))
65ancrd 551 . . . . . . . . 9 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → (𝑎𝐴𝑎𝑅𝑌)))
76adantl 481 . . . . . . . 8 ((𝑌 ∈ ran 𝑅𝑅 ⊆ (𝐴 × 𝐵)) → (𝑎𝑅𝑌 → (𝑎𝐴𝑎𝑅𝑌)))
87eximdv 1917 . . . . . . 7 ((𝑌 ∈ ran 𝑅𝑅 ⊆ (𝐴 × 𝐵)) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎𝐴𝑎𝑅𝑌)))
98ex 412 . . . . . 6 (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))))
109com23 86 . . . . 5 (𝑌 ∈ ran 𝑅 → (∃𝑎 𝑎𝑅𝑌 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))))
111, 10sylbid 240 . . . 4 (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))))
1211pm2.43i 52 . . 3 (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌)))
1312impcom 407 . 2 ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))
14 df-rex 3054 . 2 (∃𝑎𝐴 𝑎𝑅𝑌 ↔ ∃𝑎(𝑎𝐴𝑎𝑅𝑌))
1513, 14sylibr 234 1 ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎𝐴 𝑎𝑅𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wrex 3053  wss 3905   class class class wbr 5095   × cxp 5621  ran crn 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634
This theorem is referenced by:  incistruhgr  29043
  Copyright terms: Public domain W3C validator