![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrelrn | Structured version Visualization version GIF version |
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
ssrelrn | ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5550 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 ↔ ∃𝑎 𝑎𝑅𝑌)) | |
2 | ssbr 4919 | . . . . . . . . . . 11 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎(𝐴 × 𝐵)𝑌)) | |
3 | brxp 5392 | . . . . . . . . . . . 12 ⊢ (𝑎(𝐴 × 𝐵)𝑌 ↔ (𝑎 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
4 | 3 | simplbi 493 | . . . . . . . . . . 11 ⊢ (𝑎(𝐴 × 𝐵)𝑌 → 𝑎 ∈ 𝐴) |
5 | 2, 4 | syl6 35 | . . . . . . . . . 10 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎 ∈ 𝐴)) |
6 | 5 | ancrd 547 | . . . . . . . . 9 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
7 | 6 | adantl 475 | . . . . . . . 8 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
8 | 7 | eximdv 2016 | . . . . . . 7 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
9 | 8 | ex 403 | . . . . . 6 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
10 | 9 | com23 86 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (∃𝑎 𝑎𝑅𝑌 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
11 | 1, 10 | sylbid 232 | . . . 4 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
12 | 11 | pm2.43i 52 | . . 3 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
13 | 12 | impcom 398 | . 2 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) |
14 | df-rex 3123 | . 2 ⊢ (∃𝑎 ∈ 𝐴 𝑎𝑅𝑌 ↔ ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) | |
15 | 13, 14 | sylibr 226 | 1 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∃wex 1878 ∈ wcel 2164 ∃wrex 3118 ⊆ wss 3798 class class class wbr 4875 × cxp 5344 ran crn 5347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-xp 5352 df-cnv 5354 df-dm 5356 df-rn 5357 |
This theorem is referenced by: incistruhgr 26384 |
Copyright terms: Public domain | W3C validator |