![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrelrn | Structured version Visualization version GIF version |
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
ssrelrn | ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5890 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 ↔ ∃𝑎 𝑎𝑅𝑌)) | |
2 | ssbr 5191 | . . . . . . . . . . 11 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎(𝐴 × 𝐵)𝑌)) | |
3 | brxp 5724 | . . . . . . . . . . . 12 ⊢ (𝑎(𝐴 × 𝐵)𝑌 ↔ (𝑎 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
4 | 3 | simplbi 496 | . . . . . . . . . . 11 ⊢ (𝑎(𝐴 × 𝐵)𝑌 → 𝑎 ∈ 𝐴) |
5 | 2, 4 | syl6 35 | . . . . . . . . . 10 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎 ∈ 𝐴)) |
6 | 5 | ancrd 550 | . . . . . . . . 9 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
7 | 6 | adantl 480 | . . . . . . . 8 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
8 | 7 | eximdv 1918 | . . . . . . 7 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
9 | 8 | ex 411 | . . . . . 6 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
10 | 9 | com23 86 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (∃𝑎 𝑎𝑅𝑌 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
11 | 1, 10 | sylbid 239 | . . . 4 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
12 | 11 | pm2.43i 52 | . . 3 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
13 | 12 | impcom 406 | . 2 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) |
14 | df-rex 3069 | . 2 ⊢ (∃𝑎 ∈ 𝐴 𝑎𝑅𝑌 ↔ ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1779 ∈ wcel 2104 ∃wrex 3068 ⊆ wss 3947 class class class wbr 5147 × cxp 5673 ran crn 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 |
This theorem is referenced by: incistruhgr 28606 |
Copyright terms: Public domain | W3C validator |