Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrelrn | Structured version Visualization version GIF version |
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) |
Ref | Expression |
---|---|
ssrelrn | ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5789 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 ↔ ∃𝑎 𝑎𝑅𝑌)) | |
2 | ssbr 5114 | . . . . . . . . . . 11 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎(𝐴 × 𝐵)𝑌)) | |
3 | brxp 5627 | . . . . . . . . . . . 12 ⊢ (𝑎(𝐴 × 𝐵)𝑌 ↔ (𝑎 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
4 | 3 | simplbi 497 | . . . . . . . . . . 11 ⊢ (𝑎(𝐴 × 𝐵)𝑌 → 𝑎 ∈ 𝐴) |
5 | 2, 4 | syl6 35 | . . . . . . . . . 10 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎 ∈ 𝐴)) |
6 | 5 | ancrd 551 | . . . . . . . . 9 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
7 | 6 | adantl 481 | . . . . . . . 8 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
8 | 7 | eximdv 1921 | . . . . . . 7 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
9 | 8 | ex 412 | . . . . . 6 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
10 | 9 | com23 86 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (∃𝑎 𝑎𝑅𝑌 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
11 | 1, 10 | sylbid 239 | . . . 4 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) |
12 | 11 | pm2.43i 52 | . . 3 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) |
13 | 12 | impcom 407 | . 2 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) |
14 | df-rex 3069 | . 2 ⊢ (∃𝑎 ∈ 𝐴 𝑎𝑅𝑌 ↔ ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 × cxp 5578 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: incistruhgr 27352 |
Copyright terms: Public domain | W3C validator |