|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ssrelrn | Structured version Visualization version GIF version | ||
| Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| ssrelrn | ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrng 5901 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 ↔ ∃𝑎 𝑎𝑅𝑌)) | |
| 2 | ssbr 5186 | . . . . . . . . . . 11 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎(𝐴 × 𝐵)𝑌)) | |
| 3 | brxp 5733 | . . . . . . . . . . . 12 ⊢ (𝑎(𝐴 × 𝐵)𝑌 ↔ (𝑎 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
| 4 | 3 | simplbi 497 | . . . . . . . . . . 11 ⊢ (𝑎(𝐴 × 𝐵)𝑌 → 𝑎 ∈ 𝐴) | 
| 5 | 2, 4 | syl6 35 | . . . . . . . . . 10 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → 𝑎 ∈ 𝐴)) | 
| 6 | 5 | ancrd 551 | . . . . . . . . 9 ⊢ (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) | 
| 7 | 6 | adantl 481 | . . . . . . . 8 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (𝑎𝑅𝑌 → (𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) | 
| 8 | 7 | eximdv 1916 | . . . . . . 7 ⊢ ((𝑌 ∈ ran 𝑅 ∧ 𝑅 ⊆ (𝐴 × 𝐵)) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) | 
| 9 | 8 | ex 412 | . . . . . 6 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) | 
| 10 | 9 | com23 86 | . . . . 5 ⊢ (𝑌 ∈ ran 𝑅 → (∃𝑎 𝑎𝑅𝑌 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) | 
| 11 | 1, 10 | sylbid 240 | . . . 4 ⊢ (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)))) | 
| 12 | 11 | pm2.43i 52 | . . 3 ⊢ (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌))) | 
| 13 | 12 | impcom 407 | . 2 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) | 
| 14 | df-rex 3070 | . 2 ⊢ (∃𝑎 ∈ 𝐴 𝑎𝑅𝑌 ↔ ∃𝑎(𝑎 ∈ 𝐴 ∧ 𝑎𝑅𝑌)) | |
| 15 | 13, 14 | sylibr 234 | 1 ⊢ ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎 ∈ 𝐴 𝑎𝑅𝑌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 class class class wbr 5142 × cxp 5682 ran crn 5685 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 | 
| This theorem is referenced by: incistruhgr 29097 | 
| Copyright terms: Public domain | W3C validator |