MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrelrn Structured version   Visualization version   GIF version

Theorem ssrelrn 5762
Description: If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.)
Assertion
Ref Expression
ssrelrn ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎𝐴 𝑎𝑅𝑌)
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝑅,𝑎   𝑌,𝑎

Proof of Theorem ssrelrn
StepHypRef Expression
1 elrng 5761 . . . . 5 (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 ↔ ∃𝑎 𝑎𝑅𝑌))
2 ssbr 5109 . . . . . . . . . . 11 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌𝑎(𝐴 × 𝐵)𝑌))
3 brxp 5600 . . . . . . . . . . . 12 (𝑎(𝐴 × 𝐵)𝑌 ↔ (𝑎𝐴𝑌𝐵))
43simplbi 500 . . . . . . . . . . 11 (𝑎(𝐴 × 𝐵)𝑌𝑎𝐴)
52, 4syl6 35 . . . . . . . . . 10 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌𝑎𝐴))
65ancrd 554 . . . . . . . . 9 (𝑅 ⊆ (𝐴 × 𝐵) → (𝑎𝑅𝑌 → (𝑎𝐴𝑎𝑅𝑌)))
76adantl 484 . . . . . . . 8 ((𝑌 ∈ ran 𝑅𝑅 ⊆ (𝐴 × 𝐵)) → (𝑎𝑅𝑌 → (𝑎𝐴𝑎𝑅𝑌)))
87eximdv 1914 . . . . . . 7 ((𝑌 ∈ ran 𝑅𝑅 ⊆ (𝐴 × 𝐵)) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎𝐴𝑎𝑅𝑌)))
98ex 415 . . . . . 6 (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → (∃𝑎 𝑎𝑅𝑌 → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))))
109com23 86 . . . . 5 (𝑌 ∈ ran 𝑅 → (∃𝑎 𝑎𝑅𝑌 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))))
111, 10sylbid 242 . . . 4 (𝑌 ∈ ran 𝑅 → (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))))
1211pm2.43i 52 . . 3 (𝑌 ∈ ran 𝑅 → (𝑅 ⊆ (𝐴 × 𝐵) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌)))
1312impcom 410 . 2 ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎(𝑎𝐴𝑎𝑅𝑌))
14 df-rex 3144 . 2 (∃𝑎𝐴 𝑎𝑅𝑌 ↔ ∃𝑎(𝑎𝐴𝑎𝑅𝑌))
1513, 14sylibr 236 1 ((𝑅 ⊆ (𝐴 × 𝐵) ∧ 𝑌 ∈ ran 𝑅) → ∃𝑎𝐴 𝑎𝑅𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wex 1776  wcel 2110  wrex 3139  wss 3935   class class class wbr 5065   × cxp 5552  ran crn 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-br 5066  df-opab 5128  df-xp 5560  df-cnv 5562  df-dm 5564  df-rn 5565
This theorem is referenced by:  incistruhgr  26863
  Copyright terms: Public domain W3C validator