MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coss1 Structured version   Visualization version   GIF version

Theorem coss1 5856
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
coss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem coss1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5193 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑧𝑦𝐵𝑧))
21anim2d 613 . . . 4 (𝐴𝐵 → ((𝑥𝐶𝑦𝑦𝐴𝑧) → (𝑥𝐶𝑦𝑦𝐵𝑧)))
32eximdv 1921 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
43ssopab2dv 5552 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
5 df-co 5686 . 2 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
6 df-co 5686 . 2 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
74, 5, 63sstr4g 4028 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wss 3949   class class class wbr 5149  {copab 5211  ccom 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-br 5150  df-opab 5212  df-co 5686
This theorem is referenced by:  coeq1  5858  funss  6568  tposss  8212  cottrcl  9714  frmin  9744  frrlem16  9753  rtrclreclem4  15008  tsrdir  18557  ustex2sym  23721  ustex3sym  23722  ustneism  23728  trust  23734  utop2nei  23755  neipcfilu  23801  trclubgNEW  42369  trrelsuperrel2dg  42422  trclrelexplem  42462  cotrcltrcl  42476  cotrclrcl  42493  frege96d  42500  frege97d  42503  frege109d  42508  frege131d  42515
  Copyright terms: Public domain W3C validator