| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coss1 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
| Ref | Expression |
|---|---|
| coss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5146 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
| 3 | 2 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
| 4 | 3 | ssopab2dv 5506 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)}) |
| 5 | df-co 5640 | . 2 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
| 6 | df-co 5640 | . 2 ⊢ (𝐵 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)} | |
| 7 | 4, 5, 6 | 3sstr4g 3997 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ⊆ wss 3911 class class class wbr 5102 {copab 5164 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq1 5811 funss 6519 tposss 8183 cottrcl 9648 frmin 9678 frrlem16 9687 rtrclreclem4 15003 tsrdir 18539 ustex2sym 24080 ustex3sym 24081 ustneism 24087 trust 24093 utop2nei 24114 neipcfilu 24159 trclubgNEW 43580 trrelsuperrel2dg 43633 trclrelexplem 43673 cotrcltrcl 43687 cotrclrcl 43704 frege96d 43711 frege97d 43714 frege109d 43719 frege131d 43726 |
| Copyright terms: Public domain | W3C validator |