| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coss1 | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
| Ref | Expression |
|---|---|
| coss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5139 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
| 3 | 2 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
| 4 | 3 | ssopab2dv 5498 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)}) |
| 5 | df-co 5632 | . 2 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
| 6 | df-co 5632 | . 2 ⊢ (𝐵 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)} | |
| 7 | 4, 5, 6 | 3sstr4g 3991 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ⊆ wss 3905 class class class wbr 5095 {copab 5157 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3922 df-br 5096 df-opab 5158 df-co 5632 |
| This theorem is referenced by: coeq1 5804 funss 6505 tposss 8167 cottrcl 9634 frmin 9664 frrlem16 9673 rtrclreclem4 14987 tsrdir 18529 ustex2sym 24121 ustex3sym 24122 ustneism 24128 trust 24134 utop2nei 24155 neipcfilu 24200 trclubgNEW 43611 trrelsuperrel2dg 43664 trclrelexplem 43704 cotrcltrcl 43718 cotrclrcl 43735 frege96d 43742 frege97d 43745 frege109d 43750 frege131d 43757 |
| Copyright terms: Public domain | W3C validator |