![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
coss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5008 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) | |
2 | 1 | anim2d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
3 | 2 | eximdv 1896 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
4 | 3 | ssopab2dv 5329 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)}) |
5 | df-co 5455 | . 2 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
6 | df-co 5455 | . 2 ⊢ (𝐵 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)} | |
7 | 4, 5, 6 | 3sstr4g 3935 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1762 ⊆ wss 3861 class class class wbr 4964 {copab 5026 ∘ ccom 5450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-in 3868 df-ss 3876 df-br 4965 df-opab 5027 df-co 5455 |
This theorem is referenced by: coeq1 5617 funss 6247 tposss 7747 rtrclreclem4 14254 tsrdir 17677 ustex2sym 22508 ustex3sym 22509 ustneism 22515 trust 22521 utop2nei 22542 neipcfilu 22588 trclubgNEW 39476 trrelsuperrel2dg 39514 trclrelexplem 39554 cotrcltrcl 39568 cotrclrcl 39585 frege96d 39592 frege97d 39595 frege109d 39600 frege131d 39607 |
Copyright terms: Public domain | W3C validator |