MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coss1 Structured version   Visualization version   GIF version

Theorem coss1 5840
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
coss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem coss1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5168 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑧𝑦𝐵𝑧))
21anim2d 612 . . . 4 (𝐴𝐵 → ((𝑥𝐶𝑦𝑦𝐴𝑧) → (𝑥𝐶𝑦𝑦𝐵𝑧)))
32eximdv 1917 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
43ssopab2dv 5531 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
5 df-co 5668 . 2 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
6 df-co 5668 . 2 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
74, 5, 63sstr4g 4017 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wss 3931   class class class wbr 5124  {copab 5186  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ss 3948  df-br 5125  df-opab 5187  df-co 5668
This theorem is referenced by:  coeq1  5842  funss  6560  tposss  8231  cottrcl  9738  frmin  9768  frrlem16  9777  rtrclreclem4  15085  tsrdir  18619  ustex2sym  24160  ustex3sym  24161  ustneism  24167  trust  24173  utop2nei  24194  neipcfilu  24239  trclubgNEW  43609  trrelsuperrel2dg  43662  trclrelexplem  43702  cotrcltrcl  43716  cotrclrcl  43733  frege96d  43740  frege97d  43743  frege109d  43748  frege131d  43755
  Copyright terms: Public domain W3C validator