MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coss1 Structured version   Visualization version   GIF version

Theorem coss1 5753
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
coss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem coss1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5114 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑧𝑦𝐵𝑧))
21anim2d 611 . . . 4 (𝐴𝐵 → ((𝑥𝐶𝑦𝑦𝐴𝑧) → (𝑥𝐶𝑦𝑦𝐵𝑧)))
32eximdv 1921 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)))
43ssopab2dv 5457 . 2 (𝐴𝐵 → {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)} ⊆ {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)})
5 df-co 5589 . 2 (𝐴𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐴𝑧)}
6 df-co 5589 . 2 (𝐵𝐶) = {⟨𝑥, 𝑧⟩ ∣ ∃𝑦(𝑥𝐶𝑦𝑦𝐵𝑧)}
74, 5, 63sstr4g 3962 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wss 3883   class class class wbr 5070  {copab 5132  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-co 5589
This theorem is referenced by:  coeq1  5755  funss  6437  tposss  8014  rtrclreclem4  14700  tsrdir  18237  ustex2sym  23276  ustex3sym  23277  ustneism  23283  trust  23289  utop2nei  23310  neipcfilu  23356  cottrcl  33705  trclubgNEW  41115  trrelsuperrel2dg  41168  trclrelexplem  41208  cotrcltrcl  41222  cotrclrcl  41239  frege96d  41246  frege97d  41249  frege109d  41254  frege131d  41261
  Copyright terms: Public domain W3C validator