Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
coss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5097 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) | |
2 | 1 | anim2d 615 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
3 | 2 | eximdv 1925 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
4 | 3 | ssopab2dv 5432 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)}) |
5 | df-co 5560 | . 2 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
6 | df-co 5560 | . 2 ⊢ (𝐵 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)} | |
7 | 4, 5, 6 | 3sstr4g 3946 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∃wex 1787 ⊆ wss 3866 class class class wbr 5053 {copab 5115 ∘ ccom 5555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 df-br 5054 df-opab 5116 df-co 5560 |
This theorem is referenced by: coeq1 5726 funss 6399 tposss 7969 rtrclreclem4 14624 tsrdir 18110 ustex2sym 23114 ustex3sym 23115 ustneism 23121 trust 23127 utop2nei 23148 neipcfilu 23193 cottrcl 33518 trclubgNEW 40902 trrelsuperrel2dg 40956 trclrelexplem 40996 cotrcltrcl 41010 cotrclrcl 41027 frege96d 41034 frege97d 41037 frege109d 41042 frege131d 41049 |
Copyright terms: Public domain | W3C validator |