![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
coss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5196 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑧 → 𝑦𝐵𝑧)) | |
2 | 1 | anim2d 610 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → (𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
3 | 2 | eximdv 1912 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧) → ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧))) |
4 | 3 | ssopab2dv 5556 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} ⊆ {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)}) |
5 | df-co 5690 | . 2 ⊢ (𝐴 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐴𝑧)} | |
6 | df-co 5690 | . 2 ⊢ (𝐵 ∘ 𝐶) = {〈𝑥, 𝑧〉 ∣ ∃𝑦(𝑥𝐶𝑦 ∧ 𝑦𝐵𝑧)} | |
7 | 4, 5, 6 | 3sstr4g 4024 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∘ 𝐶) ⊆ (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1773 ⊆ wss 3946 class class class wbr 5152 {copab 5214 ∘ ccom 5685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ss 3963 df-br 5153 df-opab 5215 df-co 5690 |
This theorem is referenced by: coeq1 5863 funss 6577 tposss 8241 cottrcl 9758 frmin 9788 frrlem16 9797 rtrclreclem4 15061 tsrdir 18624 ustex2sym 24204 ustex3sym 24205 ustneism 24211 trust 24217 utop2nei 24238 neipcfilu 24284 trclubgNEW 43222 trrelsuperrel2dg 43275 trclrelexplem 43315 cotrcltrcl 43329 cotrclrcl 43346 frege96d 43353 frege97d 43356 frege109d 43361 frege131d 43368 |
Copyright terms: Public domain | W3C validator |