MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclss Structured version   Visualization version   GIF version

Theorem ttrclss 9680
Description: If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclss ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)

Proof of Theorem ttrclss
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 𝑛 𝑚 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6403 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = suc ∅)
2 suceq 6403 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc ∅ → suc suc 𝑚 = suc suc ∅)
31, 2syl 17 . . . . . . . . . . . . . 14 (𝑚 = ∅ → suc suc 𝑚 = suc suc ∅)
43fneq2d 6615 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc ∅))
5 df-1o 8437 . . . . . . . . . . . . . . . 16 1o = suc ∅
61, 5eqtr4di 2783 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = 1o)
76fveqeq2d 6869 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘1o) = 𝑦))
87anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = ∅ → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦)))
9 df1o2 8444 . . . . . . . . . . . . . . . 16 1o = {∅}
106, 9eqtrdi 2781 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = {∅})
1110raleqdv 3301 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
12 0ex 5265 . . . . . . . . . . . . . . 15 ∅ ∈ V
13 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
14 suceq 6403 . . . . . . . . . . . . . . . . . 18 (𝑎 = ∅ → suc 𝑎 = suc ∅)
1514, 5eqtr4di 2783 . . . . . . . . . . . . . . . . 17 (𝑎 = ∅ → suc 𝑎 = 1o)
1615fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
1713, 16breq12d 5123 . . . . . . . . . . . . . . 15 (𝑎 = ∅ → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
1812, 17ralsn 4648 . . . . . . . . . . . . . 14 (∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
1911, 18bitrdi 287 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
204, 8, 193anbi123d 1438 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2120exbidv 1921 . . . . . . . . . . 11 (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2221imbi1d 341 . . . . . . . . . 10 (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2322albidv 1920 . . . . . . . . 9 (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2423imbi2d 340 . . . . . . . 8 (𝑚 = ∅ → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))))
25 suceq 6403 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
26 suceq 6403 . . . . . . . . . . . . . . . . 17 (suc 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2827fneq2d 6615 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑖))
2925fveqeq2d 6869 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑖) = 𝑦))
3029anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦)))
3125raleqdv 3301 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
32 fveq2 6861 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓𝑎) = (𝑓𝑏))
33 suceq 6403 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
3433fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑏))
3532, 34breq12d 5123 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3635cbvralvw 3216 . . . . . . . . . . . . . . . 16 (∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))
3731, 36bitrdi 287 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3828, 30, 373anbi123d 1438 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
3938exbidv 1921 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
40 fneq1 6612 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑖𝑔 Fn suc suc 𝑖))
41 fveq1 6860 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
4241eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑥 ↔ (𝑔‘∅) = 𝑥))
43 fveq1 6860 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
4443eqeq1d 2732 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑦))
4542, 44anbi12d 632 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦)))
46 fveq1 6860 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑏) = (𝑔𝑏))
47 fveq1 6860 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑏) = (𝑔‘suc 𝑏))
4846, 47breq12d 5123 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
4948ralbidv 3157 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5040, 45, 493anbi123d 1438 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5150cbvexvw 2037 . . . . . . . . . . . . 13 (∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5239, 51bitrdi 287 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5352imbi1d 341 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
5453albidv 1920 . . . . . . . . . 10 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
55 eqeq2 2742 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑔‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑧))
5655anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧)))
57563anbi2d 1443 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5857exbidv 1921 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
59 breq2 5114 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑆𝑦𝑥𝑆𝑧))
6058, 59imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6160cbvalvw 2036 . . . . . . . . . 10 (∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))
6254, 61bitrdi 287 . . . . . . . . 9 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6362imbi2d 340 . . . . . . . 8 (𝑚 = 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))))
64 suceq 6403 . . . . . . . . . . . . . . 15 (𝑚 = suc 𝑖 → suc 𝑚 = suc suc 𝑖)
65 suceq 6403 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6766fneq2d 6615 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑖))
6864fveqeq2d 6869 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc suc 𝑖) = 𝑦))
6968anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦)))
7064raleqdv 3301 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
7167, 69, 703anbi123d 1438 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7271exbidv 1921 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7372imbi1d 341 . . . . . . . . . 10 (𝑚 = suc 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7473albidv 1920 . . . . . . . . 9 (𝑚 = suc 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7574imbi2d 340 . . . . . . . 8 (𝑚 = suc 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
76 suceq 6403 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛)
77 suceq 6403 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7876, 77syl 17 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7978fneq2d 6615 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛))
8076fveqeq2d 6869 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑛) = 𝑦))
8180anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦)))
8276raleqdv 3301 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
8379, 81, 823anbi123d 1438 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8483exbidv 1921 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8584imbi1d 341 . . . . . . . . . 10 (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8685albidv 1920 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8786imbi2d 340 . . . . . . . 8 (𝑚 = 𝑛 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
88 breq12 5115 . . . . . . . . . . . . 13 (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦))
8988biimpa 476 . . . . . . . . . . . 12 ((((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
90893adant1 1130 . . . . . . . . . . 11 ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
91 ssbr 5154 . . . . . . . . . . . 12 (𝑅𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
9291adantr 480 . . . . . . . . . . 11 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑥𝑅𝑦𝑥𝑆𝑦))
9390, 92syl5 34 . . . . . . . . . 10 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9493exlimdv 1933 . . . . . . . . 9 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9594alrimiv 1927 . . . . . . . 8 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
96 fvex 6874 . . . . . . . . . . . . . . 15 (𝑓‘suc 𝑖) ∈ V
97 eqeq2 2742 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔‘suc 𝑖) = 𝑧 ↔ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)))
9897anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓‘suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖))))
99983anbi2d 1443 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
10099exbidv 1921 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
101 breq2 5114 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (𝑥𝑆𝑧𝑥𝑆(𝑓‘suc 𝑖)))
102100, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑓‘suc 𝑖) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖))))
10396, 102spcv 3574 . . . . . . . . . . . . . 14 (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)))
104 simpr1 1195 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑓 Fn suc suc suc 𝑖)
105 sssucid 6417 . . . . . . . . . . . . . . . . . . 19 suc suc 𝑖 ⊆ suc suc suc 𝑖
106 fnssres 6644 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn suc suc suc 𝑖 ∧ suc suc 𝑖 ⊆ suc suc suc 𝑖) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
107104, 105, 106sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
108 peano2 7869 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → suc 𝑖 ∈ ω)
110 nnord 7853 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑖 ∈ ω → Ord suc 𝑖)
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → Ord suc 𝑖)
112 0elsuc 7813 . . . . . . . . . . . . . . . . . . . . 21 (Ord suc 𝑖 → ∅ ∈ suc suc 𝑖)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑖)
114113fvresd 6881 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = (𝑓‘∅))
115 simpr2l 1233 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥)
116114, 115eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥)
117 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
118117sucex 7785 . . . . . . . . . . . . . . . . . . . 20 suc 𝑖 ∈ V
119118sucid 6419 . . . . . . . . . . . . . . . . . . 19 suc 𝑖 ∈ suc suc 𝑖
120 fvres 6880 . . . . . . . . . . . . . . . . . . 19 (suc 𝑖 ∈ suc suc 𝑖 → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
121119, 120mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
122 simplr3 1218 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
123 elelsuc 6410 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ suc 𝑖𝑏 ∈ suc suc 𝑖)
124123adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → 𝑏 ∈ suc suc 𝑖)
12535, 122, 124rspcdva 3592 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → (𝑓𝑏)𝑅(𝑓‘suc 𝑏))
126124fvresd 6881 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏) = (𝑓𝑏))
127 ordsucelsuc 7800 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord suc 𝑖 → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
128111, 127syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
129128biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → suc 𝑏 ∈ suc suc 𝑖)
130129fvresd 6881 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏) = (𝑓‘suc 𝑏))
131125, 126, 1303brtr4d 5142 . . . . . . . . . . . . . . . . . . 19 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
132131ralrimiva 3126 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
133 vex 3454 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
134133resex 6003 . . . . . . . . . . . . . . . . . . 19 (𝑓 ↾ suc suc 𝑖) ∈ V
135 fneq1 6612 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔 Fn suc suc 𝑖 ↔ (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖))
136 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘∅) = ((𝑓 ↾ suc suc 𝑖)‘∅))
137136eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘∅) = 𝑥 ↔ ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥))
138 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑖) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖))
139138eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘suc 𝑖) = (𝑓‘suc 𝑖) ↔ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)))
140137, 139anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ↔ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))))
141 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔𝑏) = ((𝑓 ↾ suc suc 𝑖)‘𝑏))
142 fveq1 6860 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑏) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
143141, 142breq12d 5123 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
144143ralbidv 3157 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
145135, 140, 1443anbi123d 1438 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))))
146134, 145spcev 3575 . . . . . . . . . . . . . . . . . 18 (((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
147107, 116, 121, 132, 146syl121anc 1377 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
148 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑅𝑆)
149 simpr3 1197 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
150 ssbr 5154 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅𝑆 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
151150ralimdv 3148 . . . . . . . . . . . . . . . . . . . . 21 (𝑅𝑆 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
152148, 149, 151sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎))
153 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓𝑎) = (𝑓‘suc 𝑖))
154 suceq 6403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = suc 𝑖 → suc 𝑎 = suc suc 𝑖)
155154fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑖))
156153, 155breq12d 5123 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = suc 𝑖 → ((𝑓𝑎)𝑆(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
157156rspcv 3587 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑖 ∈ suc suc 𝑖 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
158119, 152, 157mpsyl 68 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖))
159 simpr2r 1234 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑖) = 𝑦)
160158, 159breqtrd 5136 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆𝑦)
161 breq1 5113 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓‘suc 𝑖) → (𝑧𝑆𝑦 ↔ (𝑓‘suc 𝑖)𝑆𝑦))
162101, 161anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓‘suc 𝑖) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ (𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦)))
16396, 162spcev 3575 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
164 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
165 vex 3454 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
166164, 165brco 5837 . . . . . . . . . . . . . . . . . . . 20 (𝑥(𝑆𝑆)𝑦 ↔ ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
167163, 166sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥(𝑆𝑆)𝑦)
168 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑆𝑆) ⊆ 𝑆)
169168ssbrd 5153 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥(𝑆𝑆)𝑦𝑥𝑆𝑦))
170167, 169syl5 34 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥𝑆𝑦))
171160, 170mpan2d 694 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥𝑆(𝑓‘suc 𝑖) → 𝑥𝑆𝑦))
172147, 171embantd 59 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦))
173172ex 412 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦)))
174173com23 86 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
175103, 174syl5 34 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
1761753impia 1117 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
177176exlimdv 1933 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
178177alrimiv 1927 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
1791783exp 1119 . . . . . . . . 9 (𝑖 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
180179a2d 29 . . . . . . . 8 (𝑖 ∈ ω → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
18124, 63, 75, 87, 95, 180finds 7875 . . . . . . 7 (𝑛 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
182181com12 32 . . . . . 6 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑛 ∈ ω → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
183182ralrimiv 3125 . . . . 5 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
184 ralcom4 3264 . . . . . 6 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
185 r19.23v 3162 . . . . . . 7 (∀𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
186185albii 1819 . . . . . 6 (∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
187184, 186bitri 275 . . . . 5 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
188183, 187sylib 218 . . . 4 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
189 brttrcl2 9674 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
190 df-br 5111 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
191189, 190bitr3i 277 . . . . . 6 (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
192 df-br 5111 . . . . . 6 (𝑥𝑆𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆)
193191, 192imbi12i 350 . . . . 5 ((∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
194193albii 1819 . . . 4 (∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
195188, 194sylib 218 . . 3 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
196195alrimiv 1927 . 2 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
197 relttrcl 9672 . . 3 Rel t++𝑅
198 ssrel 5748 . . 3 (Rel t++𝑅 → (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
199197, 198ax-mp 5 . 2 (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
200196, 199sylibr 234 1 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  wss 3917  c0 4299  {csn 4592  cop 4598   class class class wbr 5110  cres 5643  ccom 5645  Rel wrel 5646  Ord word 6334  suc csuc 6337   Fn wfn 6509  cfv 6514  ωcom 7845  1oc1o 8430  t++cttrcl 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-ttrcl 9668
This theorem is referenced by:  dfttrcl2  9684
  Copyright terms: Public domain W3C validator