MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclss Structured version   Visualization version   GIF version

Theorem ttrclss 9758
Description: If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclss ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)

Proof of Theorem ttrclss
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 𝑛 𝑚 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6452 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = suc ∅)
2 suceq 6452 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc ∅ → suc suc 𝑚 = suc suc ∅)
31, 2syl 17 . . . . . . . . . . . . . 14 (𝑚 = ∅ → suc suc 𝑚 = suc suc ∅)
43fneq2d 6663 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc ∅))
5 df-1o 8505 . . . . . . . . . . . . . . . 16 1o = suc ∅
61, 5eqtr4di 2793 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = 1o)
76fveqeq2d 6915 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘1o) = 𝑦))
87anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = ∅ → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦)))
9 df1o2 8512 . . . . . . . . . . . . . . . 16 1o = {∅}
106, 9eqtrdi 2791 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = {∅})
1110raleqdv 3324 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
12 0ex 5313 . . . . . . . . . . . . . . 15 ∅ ∈ V
13 fveq2 6907 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
14 suceq 6452 . . . . . . . . . . . . . . . . . 18 (𝑎 = ∅ → suc 𝑎 = suc ∅)
1514, 5eqtr4di 2793 . . . . . . . . . . . . . . . . 17 (𝑎 = ∅ → suc 𝑎 = 1o)
1615fveq2d 6911 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
1713, 16breq12d 5161 . . . . . . . . . . . . . . 15 (𝑎 = ∅ → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
1812, 17ralsn 4686 . . . . . . . . . . . . . 14 (∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
1911, 18bitrdi 287 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
204, 8, 193anbi123d 1435 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2120exbidv 1919 . . . . . . . . . . 11 (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2221imbi1d 341 . . . . . . . . . 10 (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2322albidv 1918 . . . . . . . . 9 (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2423imbi2d 340 . . . . . . . 8 (𝑚 = ∅ → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))))
25 suceq 6452 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
26 suceq 6452 . . . . . . . . . . . . . . . . 17 (suc 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2827fneq2d 6663 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑖))
2925fveqeq2d 6915 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑖) = 𝑦))
3029anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦)))
3125raleqdv 3324 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
32 fveq2 6907 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓𝑎) = (𝑓𝑏))
33 suceq 6452 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
3433fveq2d 6911 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑏))
3532, 34breq12d 5161 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3635cbvralvw 3235 . . . . . . . . . . . . . . . 16 (∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))
3731, 36bitrdi 287 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3828, 30, 373anbi123d 1435 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
3938exbidv 1919 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
40 fneq1 6660 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑖𝑔 Fn suc suc 𝑖))
41 fveq1 6906 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
4241eqeq1d 2737 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑥 ↔ (𝑔‘∅) = 𝑥))
43 fveq1 6906 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
4443eqeq1d 2737 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑦))
4542, 44anbi12d 632 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦)))
46 fveq1 6906 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑏) = (𝑔𝑏))
47 fveq1 6906 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑏) = (𝑔‘suc 𝑏))
4846, 47breq12d 5161 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
4948ralbidv 3176 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5040, 45, 493anbi123d 1435 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5150cbvexvw 2034 . . . . . . . . . . . . 13 (∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5239, 51bitrdi 287 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5352imbi1d 341 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
5453albidv 1918 . . . . . . . . . 10 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
55 eqeq2 2747 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑔‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑧))
5655anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧)))
57563anbi2d 1440 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5857exbidv 1919 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
59 breq2 5152 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑆𝑦𝑥𝑆𝑧))
6058, 59imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6160cbvalvw 2033 . . . . . . . . . 10 (∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))
6254, 61bitrdi 287 . . . . . . . . 9 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6362imbi2d 340 . . . . . . . 8 (𝑚 = 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))))
64 suceq 6452 . . . . . . . . . . . . . . 15 (𝑚 = suc 𝑖 → suc 𝑚 = suc suc 𝑖)
65 suceq 6452 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6766fneq2d 6663 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑖))
6864fveqeq2d 6915 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc suc 𝑖) = 𝑦))
6968anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦)))
7064raleqdv 3324 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
7167, 69, 703anbi123d 1435 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7271exbidv 1919 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7372imbi1d 341 . . . . . . . . . 10 (𝑚 = suc 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7473albidv 1918 . . . . . . . . 9 (𝑚 = suc 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7574imbi2d 340 . . . . . . . 8 (𝑚 = suc 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
76 suceq 6452 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛)
77 suceq 6452 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7876, 77syl 17 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7978fneq2d 6663 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛))
8076fveqeq2d 6915 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑛) = 𝑦))
8180anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦)))
8276raleqdv 3324 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
8379, 81, 823anbi123d 1435 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8483exbidv 1919 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8584imbi1d 341 . . . . . . . . . 10 (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8685albidv 1918 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8786imbi2d 340 . . . . . . . 8 (𝑚 = 𝑛 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
88 breq12 5153 . . . . . . . . . . . . 13 (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦))
8988biimpa 476 . . . . . . . . . . . 12 ((((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
90893adant1 1129 . . . . . . . . . . 11 ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
91 ssbr 5192 . . . . . . . . . . . 12 (𝑅𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
9291adantr 480 . . . . . . . . . . 11 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑥𝑅𝑦𝑥𝑆𝑦))
9390, 92syl5 34 . . . . . . . . . 10 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9493exlimdv 1931 . . . . . . . . 9 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9594alrimiv 1925 . . . . . . . 8 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
96 fvex 6920 . . . . . . . . . . . . . . 15 (𝑓‘suc 𝑖) ∈ V
97 eqeq2 2747 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔‘suc 𝑖) = 𝑧 ↔ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)))
9897anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓‘suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖))))
99983anbi2d 1440 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
10099exbidv 1919 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
101 breq2 5152 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (𝑥𝑆𝑧𝑥𝑆(𝑓‘suc 𝑖)))
102100, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑓‘suc 𝑖) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖))))
10396, 102spcv 3605 . . . . . . . . . . . . . 14 (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)))
104 simpr1 1193 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑓 Fn suc suc suc 𝑖)
105 sssucid 6466 . . . . . . . . . . . . . . . . . . 19 suc suc 𝑖 ⊆ suc suc suc 𝑖
106 fnssres 6692 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn suc suc suc 𝑖 ∧ suc suc 𝑖 ⊆ suc suc suc 𝑖) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
107104, 105, 106sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
108 peano2 7913 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → suc 𝑖 ∈ ω)
110 nnord 7895 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑖 ∈ ω → Ord suc 𝑖)
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → Ord suc 𝑖)
112 0elsuc 7855 . . . . . . . . . . . . . . . . . . . . 21 (Ord suc 𝑖 → ∅ ∈ suc suc 𝑖)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑖)
114113fvresd 6927 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = (𝑓‘∅))
115 simpr2l 1231 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥)
116114, 115eqtrd 2775 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥)
117 vex 3482 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
118117sucex 7826 . . . . . . . . . . . . . . . . . . . 20 suc 𝑖 ∈ V
119118sucid 6468 . . . . . . . . . . . . . . . . . . 19 suc 𝑖 ∈ suc suc 𝑖
120 fvres 6926 . . . . . . . . . . . . . . . . . . 19 (suc 𝑖 ∈ suc suc 𝑖 → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
121119, 120mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
122 simplr3 1216 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
123 elelsuc 6459 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ suc 𝑖𝑏 ∈ suc suc 𝑖)
124123adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → 𝑏 ∈ suc suc 𝑖)
12535, 122, 124rspcdva 3623 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → (𝑓𝑏)𝑅(𝑓‘suc 𝑏))
126124fvresd 6927 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏) = (𝑓𝑏))
127 ordsucelsuc 7842 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord suc 𝑖 → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
128111, 127syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
129128biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → suc 𝑏 ∈ suc suc 𝑖)
130129fvresd 6927 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏) = (𝑓‘suc 𝑏))
131125, 126, 1303brtr4d 5180 . . . . . . . . . . . . . . . . . . 19 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
132131ralrimiva 3144 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
133 vex 3482 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
134133resex 6049 . . . . . . . . . . . . . . . . . . 19 (𝑓 ↾ suc suc 𝑖) ∈ V
135 fneq1 6660 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔 Fn suc suc 𝑖 ↔ (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖))
136 fveq1 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘∅) = ((𝑓 ↾ suc suc 𝑖)‘∅))
137136eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘∅) = 𝑥 ↔ ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥))
138 fveq1 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑖) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖))
139138eqeq1d 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘suc 𝑖) = (𝑓‘suc 𝑖) ↔ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)))
140137, 139anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ↔ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))))
141 fveq1 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔𝑏) = ((𝑓 ↾ suc suc 𝑖)‘𝑏))
142 fveq1 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑏) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
143141, 142breq12d 5161 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
144143ralbidv 3176 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
145135, 140, 1443anbi123d 1435 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))))
146134, 145spcev 3606 . . . . . . . . . . . . . . . . . 18 (((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
147107, 116, 121, 132, 146syl121anc 1374 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
148 simplrl 777 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑅𝑆)
149 simpr3 1195 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
150 ssbr 5192 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅𝑆 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
151150ralimdv 3167 . . . . . . . . . . . . . . . . . . . . 21 (𝑅𝑆 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
152148, 149, 151sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎))
153 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓𝑎) = (𝑓‘suc 𝑖))
154 suceq 6452 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = suc 𝑖 → suc 𝑎 = suc suc 𝑖)
155154fveq2d 6911 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑖))
156153, 155breq12d 5161 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = suc 𝑖 → ((𝑓𝑎)𝑆(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
157156rspcv 3618 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑖 ∈ suc suc 𝑖 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
158119, 152, 157mpsyl 68 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖))
159 simpr2r 1232 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑖) = 𝑦)
160158, 159breqtrd 5174 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆𝑦)
161 breq1 5151 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓‘suc 𝑖) → (𝑧𝑆𝑦 ↔ (𝑓‘suc 𝑖)𝑆𝑦))
162101, 161anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓‘suc 𝑖) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ (𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦)))
16396, 162spcev 3606 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
164 vex 3482 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
165 vex 3482 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
166164, 165brco 5884 . . . . . . . . . . . . . . . . . . . 20 (𝑥(𝑆𝑆)𝑦 ↔ ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
167163, 166sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥(𝑆𝑆)𝑦)
168 simplrr 778 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑆𝑆) ⊆ 𝑆)
169168ssbrd 5191 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥(𝑆𝑆)𝑦𝑥𝑆𝑦))
170167, 169syl5 34 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥𝑆𝑦))
171160, 170mpan2d 694 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥𝑆(𝑓‘suc 𝑖) → 𝑥𝑆𝑦))
172147, 171embantd 59 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦))
173172ex 412 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦)))
174173com23 86 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
175103, 174syl5 34 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
1761753impia 1116 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
177176exlimdv 1931 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
178177alrimiv 1925 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
1791783exp 1118 . . . . . . . . 9 (𝑖 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
180179a2d 29 . . . . . . . 8 (𝑖 ∈ ω → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
18124, 63, 75, 87, 95, 180finds 7919 . . . . . . 7 (𝑛 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
182181com12 32 . . . . . 6 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑛 ∈ ω → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
183182ralrimiv 3143 . . . . 5 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
184 ralcom4 3284 . . . . . 6 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
185 r19.23v 3181 . . . . . . 7 (∀𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
186185albii 1816 . . . . . 6 (∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
187184, 186bitri 275 . . . . 5 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
188183, 187sylib 218 . . . 4 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
189 brttrcl2 9752 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
190 df-br 5149 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
191189, 190bitr3i 277 . . . . . 6 (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
192 df-br 5149 . . . . . 6 (𝑥𝑆𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆)
193191, 192imbi12i 350 . . . . 5 ((∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
194193albii 1816 . . . 4 (∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
195188, 194sylib 218 . . 3 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
196195alrimiv 1925 . 2 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
197 relttrcl 9750 . . 3 Rel t++𝑅
198 ssrel 5795 . . 3 (Rel t++𝑅 → (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
199197, 198ax-mp 5 . 2 (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
200196, 199sylibr 234 1 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  wss 3963  c0 4339  {csn 4631  cop 4637   class class class wbr 5148  cres 5691  ccom 5693  Rel wrel 5694  Ord word 6385  suc csuc 6388   Fn wfn 6558  cfv 6563  ωcom 7887  1oc1o 8498  t++cttrcl 9745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-ttrcl 9746
This theorem is referenced by:  dfttrcl2  9762
  Copyright terms: Public domain W3C validator