MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclss Structured version   Visualization version   GIF version

Theorem ttrclss 9656
Description: If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclss ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)

Proof of Theorem ttrclss
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 𝑛 𝑚 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6383 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = suc ∅)
2 suceq 6383 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc ∅ → suc suc 𝑚 = suc suc ∅)
31, 2syl 17 . . . . . . . . . . . . . 14 (𝑚 = ∅ → suc suc 𝑚 = suc suc ∅)
43fneq2d 6596 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc ∅))
5 df-1o 8412 . . . . . . . . . . . . . . . 16 1o = suc ∅
61, 5eqtr4di 2794 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = 1o)
76fveqeq2d 6850 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘1o) = 𝑦))
87anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = ∅ → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦)))
9 df1o2 8419 . . . . . . . . . . . . . . . 16 1o = {∅}
106, 9eqtrdi 2792 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = {∅})
1110raleqdv 3313 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
12 0ex 5264 . . . . . . . . . . . . . . 15 ∅ ∈ V
13 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
14 suceq 6383 . . . . . . . . . . . . . . . . . 18 (𝑎 = ∅ → suc 𝑎 = suc ∅)
1514, 5eqtr4di 2794 . . . . . . . . . . . . . . . . 17 (𝑎 = ∅ → suc 𝑎 = 1o)
1615fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
1713, 16breq12d 5118 . . . . . . . . . . . . . . 15 (𝑎 = ∅ → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
1812, 17ralsn 4642 . . . . . . . . . . . . . 14 (∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
1911, 18bitrdi 286 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
204, 8, 193anbi123d 1436 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2120exbidv 1924 . . . . . . . . . . 11 (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2221imbi1d 341 . . . . . . . . . 10 (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2322albidv 1923 . . . . . . . . 9 (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2423imbi2d 340 . . . . . . . 8 (𝑚 = ∅ → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))))
25 suceq 6383 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
26 suceq 6383 . . . . . . . . . . . . . . . . 17 (suc 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2827fneq2d 6596 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑖))
2925fveqeq2d 6850 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑖) = 𝑦))
3029anbi2d 629 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦)))
3125raleqdv 3313 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
32 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓𝑎) = (𝑓𝑏))
33 suceq 6383 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
3433fveq2d 6846 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑏))
3532, 34breq12d 5118 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3635cbvralvw 3225 . . . . . . . . . . . . . . . 16 (∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))
3731, 36bitrdi 286 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3828, 30, 373anbi123d 1436 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
3938exbidv 1924 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
40 fneq1 6593 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑖𝑔 Fn suc suc 𝑖))
41 fveq1 6841 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
4241eqeq1d 2738 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑥 ↔ (𝑔‘∅) = 𝑥))
43 fveq1 6841 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
4443eqeq1d 2738 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑦))
4542, 44anbi12d 631 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦)))
46 fveq1 6841 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑏) = (𝑔𝑏))
47 fveq1 6841 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑏) = (𝑔‘suc 𝑏))
4846, 47breq12d 5118 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
4948ralbidv 3174 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5040, 45, 493anbi123d 1436 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5150cbvexvw 2040 . . . . . . . . . . . . 13 (∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5239, 51bitrdi 286 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5352imbi1d 341 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
5453albidv 1923 . . . . . . . . . 10 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
55 eqeq2 2748 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑔‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑧))
5655anbi2d 629 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧)))
57563anbi2d 1441 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5857exbidv 1924 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
59 breq2 5109 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑆𝑦𝑥𝑆𝑧))
6058, 59imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6160cbvalvw 2039 . . . . . . . . . 10 (∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))
6254, 61bitrdi 286 . . . . . . . . 9 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6362imbi2d 340 . . . . . . . 8 (𝑚 = 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))))
64 suceq 6383 . . . . . . . . . . . . . . 15 (𝑚 = suc 𝑖 → suc 𝑚 = suc suc 𝑖)
65 suceq 6383 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6766fneq2d 6596 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑖))
6864fveqeq2d 6850 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc suc 𝑖) = 𝑦))
6968anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦)))
7064raleqdv 3313 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
7167, 69, 703anbi123d 1436 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7271exbidv 1924 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7372imbi1d 341 . . . . . . . . . 10 (𝑚 = suc 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7473albidv 1923 . . . . . . . . 9 (𝑚 = suc 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7574imbi2d 340 . . . . . . . 8 (𝑚 = suc 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
76 suceq 6383 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛)
77 suceq 6383 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7876, 77syl 17 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7978fneq2d 6596 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛))
8076fveqeq2d 6850 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑛) = 𝑦))
8180anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦)))
8276raleqdv 3313 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
8379, 81, 823anbi123d 1436 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8483exbidv 1924 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8584imbi1d 341 . . . . . . . . . 10 (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8685albidv 1923 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8786imbi2d 340 . . . . . . . 8 (𝑚 = 𝑛 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
88 breq12 5110 . . . . . . . . . . . . 13 (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦))
8988biimpa 477 . . . . . . . . . . . 12 ((((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
90893adant1 1130 . . . . . . . . . . 11 ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
91 ssbr 5149 . . . . . . . . . . . 12 (𝑅𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
9291adantr 481 . . . . . . . . . . 11 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑥𝑅𝑦𝑥𝑆𝑦))
9390, 92syl5 34 . . . . . . . . . 10 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9493exlimdv 1936 . . . . . . . . 9 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9594alrimiv 1930 . . . . . . . 8 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
96 fvex 6855 . . . . . . . . . . . . . . 15 (𝑓‘suc 𝑖) ∈ V
97 eqeq2 2748 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔‘suc 𝑖) = 𝑧 ↔ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)))
9897anbi2d 629 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓‘suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖))))
99983anbi2d 1441 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
10099exbidv 1924 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
101 breq2 5109 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (𝑥𝑆𝑧𝑥𝑆(𝑓‘suc 𝑖)))
102100, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑓‘suc 𝑖) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖))))
10396, 102spcv 3564 . . . . . . . . . . . . . 14 (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)))
104 simpr1 1194 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑓 Fn suc suc suc 𝑖)
105 sssucid 6397 . . . . . . . . . . . . . . . . . . 19 suc suc 𝑖 ⊆ suc suc suc 𝑖
106 fnssres 6624 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn suc suc suc 𝑖 ∧ suc suc 𝑖 ⊆ suc suc suc 𝑖) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
107104, 105, 106sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
108 peano2 7827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
109108ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → suc 𝑖 ∈ ω)
110 nnord 7810 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑖 ∈ ω → Ord suc 𝑖)
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → Ord suc 𝑖)
112 0elsuc 7770 . . . . . . . . . . . . . . . . . . . . 21 (Ord suc 𝑖 → ∅ ∈ suc suc 𝑖)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑖)
114113fvresd 6862 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = (𝑓‘∅))
115 simpr2l 1232 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥)
116114, 115eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥)
117 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
118117sucex 7741 . . . . . . . . . . . . . . . . . . . 20 suc 𝑖 ∈ V
119118sucid 6399 . . . . . . . . . . . . . . . . . . 19 suc 𝑖 ∈ suc suc 𝑖
120 fvres 6861 . . . . . . . . . . . . . . . . . . 19 (suc 𝑖 ∈ suc suc 𝑖 → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
121119, 120mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
122 simplr3 1217 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
123 elelsuc 6390 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ suc 𝑖𝑏 ∈ suc suc 𝑖)
124123adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → 𝑏 ∈ suc suc 𝑖)
12535, 122, 124rspcdva 3582 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → (𝑓𝑏)𝑅(𝑓‘suc 𝑏))
126124fvresd 6862 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏) = (𝑓𝑏))
127 ordsucelsuc 7757 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord suc 𝑖 → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
128111, 127syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
129128biimpa 477 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → suc 𝑏 ∈ suc suc 𝑖)
130129fvresd 6862 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏) = (𝑓‘suc 𝑏))
131125, 126, 1303brtr4d 5137 . . . . . . . . . . . . . . . . . . 19 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
132131ralrimiva 3143 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
133 vex 3449 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
134133resex 5985 . . . . . . . . . . . . . . . . . . 19 (𝑓 ↾ suc suc 𝑖) ∈ V
135 fneq1 6593 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔 Fn suc suc 𝑖 ↔ (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖))
136 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘∅) = ((𝑓 ↾ suc suc 𝑖)‘∅))
137136eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘∅) = 𝑥 ↔ ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥))
138 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑖) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖))
139138eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘suc 𝑖) = (𝑓‘suc 𝑖) ↔ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)))
140137, 139anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ↔ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))))
141 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔𝑏) = ((𝑓 ↾ suc suc 𝑖)‘𝑏))
142 fveq1 6841 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑏) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
143141, 142breq12d 5118 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
144143ralbidv 3174 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
145135, 140, 1443anbi123d 1436 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))))
146134, 145spcev 3565 . . . . . . . . . . . . . . . . . 18 (((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
147107, 116, 121, 132, 146syl121anc 1375 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
148 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑅𝑆)
149 simpr3 1196 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
150 ssbr 5149 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅𝑆 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
151150ralimdv 3166 . . . . . . . . . . . . . . . . . . . . 21 (𝑅𝑆 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
152148, 149, 151sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎))
153 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓𝑎) = (𝑓‘suc 𝑖))
154 suceq 6383 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = suc 𝑖 → suc 𝑎 = suc suc 𝑖)
155154fveq2d 6846 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑖))
156153, 155breq12d 5118 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = suc 𝑖 → ((𝑓𝑎)𝑆(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
157156rspcv 3577 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑖 ∈ suc suc 𝑖 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
158119, 152, 157mpsyl 68 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖))
159 simpr2r 1233 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑖) = 𝑦)
160158, 159breqtrd 5131 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆𝑦)
161 breq1 5108 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓‘suc 𝑖) → (𝑧𝑆𝑦 ↔ (𝑓‘suc 𝑖)𝑆𝑦))
162101, 161anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓‘suc 𝑖) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ (𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦)))
16396, 162spcev 3565 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
164 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
165 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
166164, 165brco 5826 . . . . . . . . . . . . . . . . . . . 20 (𝑥(𝑆𝑆)𝑦 ↔ ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
167163, 166sylibr 233 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥(𝑆𝑆)𝑦)
168 simplrr 776 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑆𝑆) ⊆ 𝑆)
169168ssbrd 5148 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥(𝑆𝑆)𝑦𝑥𝑆𝑦))
170167, 169syl5 34 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥𝑆𝑦))
171160, 170mpan2d 692 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥𝑆(𝑓‘suc 𝑖) → 𝑥𝑆𝑦))
172147, 171embantd 59 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦))
173172ex 413 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦)))
174173com23 86 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
175103, 174syl5 34 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
1761753impia 1117 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
177176exlimdv 1936 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
178177alrimiv 1930 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
1791783exp 1119 . . . . . . . . 9 (𝑖 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
180179a2d 29 . . . . . . . 8 (𝑖 ∈ ω → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
18124, 63, 75, 87, 95, 180finds 7835 . . . . . . 7 (𝑛 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
182181com12 32 . . . . . 6 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑛 ∈ ω → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
183182ralrimiv 3142 . . . . 5 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
184 ralcom4 3269 . . . . . 6 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
185 r19.23v 3179 . . . . . . 7 (∀𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
186185albii 1821 . . . . . 6 (∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
187184, 186bitri 274 . . . . 5 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
188183, 187sylib 217 . . . 4 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
189 brttrcl2 9650 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
190 df-br 5106 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
191189, 190bitr3i 276 . . . . . 6 (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
192 df-br 5106 . . . . . 6 (𝑥𝑆𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆)
193191, 192imbi12i 350 . . . . 5 ((∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
194193albii 1821 . . . 4 (∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
195188, 194sylib 217 . . 3 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
196195alrimiv 1930 . 2 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
197 relttrcl 9648 . . 3 Rel t++𝑅
198 ssrel 5738 . . 3 (Rel t++𝑅 → (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
199197, 198ax-mp 5 . 2 (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
200196, 199sylibr 233 1 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  wss 3910  c0 4282  {csn 4586  cop 4592   class class class wbr 5105  cres 5635  ccom 5637  Rel wrel 5638  Ord word 6316  suc csuc 6319   Fn wfn 6491  cfv 6496  ωcom 7802  1oc1o 8405  t++cttrcl 9643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-ttrcl 9644
This theorem is referenced by:  dfttrcl2  9660
  Copyright terms: Public domain W3C validator