MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclss Structured version   Visualization version   GIF version

Theorem ttrclss 9616
Description: If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclss ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)

Proof of Theorem ttrclss
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 𝑛 𝑚 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6375 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = suc ∅)
2 suceq 6375 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc ∅ → suc suc 𝑚 = suc suc ∅)
31, 2syl 17 . . . . . . . . . . . . . 14 (𝑚 = ∅ → suc suc 𝑚 = suc suc ∅)
43fneq2d 6576 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc ∅))
5 df-1o 8388 . . . . . . . . . . . . . . . 16 1o = suc ∅
61, 5eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = 1o)
76fveqeq2d 6830 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘1o) = 𝑦))
87anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = ∅ → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦)))
9 df1o2 8395 . . . . . . . . . . . . . . . 16 1o = {∅}
106, 9eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = {∅})
1110raleqdv 3289 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
12 0ex 5246 . . . . . . . . . . . . . . 15 ∅ ∈ V
13 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
14 suceq 6375 . . . . . . . . . . . . . . . . . 18 (𝑎 = ∅ → suc 𝑎 = suc ∅)
1514, 5eqtr4di 2782 . . . . . . . . . . . . . . . . 17 (𝑎 = ∅ → suc 𝑎 = 1o)
1615fveq2d 6826 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
1713, 16breq12d 5105 . . . . . . . . . . . . . . 15 (𝑎 = ∅ → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
1812, 17ralsn 4633 . . . . . . . . . . . . . 14 (∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
1911, 18bitrdi 287 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
204, 8, 193anbi123d 1438 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2120exbidv 1921 . . . . . . . . . . 11 (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2221imbi1d 341 . . . . . . . . . 10 (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2322albidv 1920 . . . . . . . . 9 (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2423imbi2d 340 . . . . . . . 8 (𝑚 = ∅ → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))))
25 suceq 6375 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
26 suceq 6375 . . . . . . . . . . . . . . . . 17 (suc 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2827fneq2d 6576 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑖))
2925fveqeq2d 6830 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑖) = 𝑦))
3029anbi2d 630 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦)))
3125raleqdv 3289 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
32 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓𝑎) = (𝑓𝑏))
33 suceq 6375 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
3433fveq2d 6826 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑏))
3532, 34breq12d 5105 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3635cbvralvw 3207 . . . . . . . . . . . . . . . 16 (∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))
3731, 36bitrdi 287 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3828, 30, 373anbi123d 1438 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
3938exbidv 1921 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
40 fneq1 6573 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑖𝑔 Fn suc suc 𝑖))
41 fveq1 6821 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
4241eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑥 ↔ (𝑔‘∅) = 𝑥))
43 fveq1 6821 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
4443eqeq1d 2731 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑦))
4542, 44anbi12d 632 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦)))
46 fveq1 6821 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑏) = (𝑔𝑏))
47 fveq1 6821 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑏) = (𝑔‘suc 𝑏))
4846, 47breq12d 5105 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
4948ralbidv 3152 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5040, 45, 493anbi123d 1438 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5150cbvexvw 2037 . . . . . . . . . . . . 13 (∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5239, 51bitrdi 287 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5352imbi1d 341 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
5453albidv 1920 . . . . . . . . . 10 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
55 eqeq2 2741 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑔‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑧))
5655anbi2d 630 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧)))
57563anbi2d 1443 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5857exbidv 1921 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
59 breq2 5096 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑆𝑦𝑥𝑆𝑧))
6058, 59imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6160cbvalvw 2036 . . . . . . . . . 10 (∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))
6254, 61bitrdi 287 . . . . . . . . 9 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6362imbi2d 340 . . . . . . . 8 (𝑚 = 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))))
64 suceq 6375 . . . . . . . . . . . . . . 15 (𝑚 = suc 𝑖 → suc 𝑚 = suc suc 𝑖)
65 suceq 6375 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6766fneq2d 6576 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑖))
6864fveqeq2d 6830 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc suc 𝑖) = 𝑦))
6968anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦)))
7064raleqdv 3289 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
7167, 69, 703anbi123d 1438 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7271exbidv 1921 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7372imbi1d 341 . . . . . . . . . 10 (𝑚 = suc 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7473albidv 1920 . . . . . . . . 9 (𝑚 = suc 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7574imbi2d 340 . . . . . . . 8 (𝑚 = suc 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
76 suceq 6375 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛)
77 suceq 6375 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7876, 77syl 17 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7978fneq2d 6576 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛))
8076fveqeq2d 6830 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑛) = 𝑦))
8180anbi2d 630 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦)))
8276raleqdv 3289 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
8379, 81, 823anbi123d 1438 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8483exbidv 1921 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8584imbi1d 341 . . . . . . . . . 10 (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8685albidv 1920 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8786imbi2d 340 . . . . . . . 8 (𝑚 = 𝑛 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
88 breq12 5097 . . . . . . . . . . . . 13 (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦))
8988biimpa 476 . . . . . . . . . . . 12 ((((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
90893adant1 1130 . . . . . . . . . . 11 ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
91 ssbr 5136 . . . . . . . . . . . 12 (𝑅𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
9291adantr 480 . . . . . . . . . . 11 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑥𝑅𝑦𝑥𝑆𝑦))
9390, 92syl5 34 . . . . . . . . . 10 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9493exlimdv 1933 . . . . . . . . 9 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9594alrimiv 1927 . . . . . . . 8 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
96 fvex 6835 . . . . . . . . . . . . . . 15 (𝑓‘suc 𝑖) ∈ V
97 eqeq2 2741 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔‘suc 𝑖) = 𝑧 ↔ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)))
9897anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓‘suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖))))
99983anbi2d 1443 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
10099exbidv 1921 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
101 breq2 5096 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (𝑥𝑆𝑧𝑥𝑆(𝑓‘suc 𝑖)))
102100, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑓‘suc 𝑖) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖))))
10396, 102spcv 3560 . . . . . . . . . . . . . 14 (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)))
104 simpr1 1195 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑓 Fn suc suc suc 𝑖)
105 sssucid 6389 . . . . . . . . . . . . . . . . . . 19 suc suc 𝑖 ⊆ suc suc suc 𝑖
106 fnssres 6605 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn suc suc suc 𝑖 ∧ suc suc 𝑖 ⊆ suc suc suc 𝑖) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
107104, 105, 106sylancl 586 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
108 peano2 7823 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → suc 𝑖 ∈ ω)
110 nnord 7807 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑖 ∈ ω → Ord suc 𝑖)
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → Ord suc 𝑖)
112 0elsuc 7768 . . . . . . . . . . . . . . . . . . . . 21 (Ord suc 𝑖 → ∅ ∈ suc suc 𝑖)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑖)
114113fvresd 6842 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = (𝑓‘∅))
115 simpr2l 1233 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥)
116114, 115eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥)
117 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
118117sucex 7742 . . . . . . . . . . . . . . . . . . . 20 suc 𝑖 ∈ V
119118sucid 6391 . . . . . . . . . . . . . . . . . . 19 suc 𝑖 ∈ suc suc 𝑖
120 fvres 6841 . . . . . . . . . . . . . . . . . . 19 (suc 𝑖 ∈ suc suc 𝑖 → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
121119, 120mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
122 simplr3 1218 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
123 elelsuc 6382 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ suc 𝑖𝑏 ∈ suc suc 𝑖)
124123adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → 𝑏 ∈ suc suc 𝑖)
12535, 122, 124rspcdva 3578 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → (𝑓𝑏)𝑅(𝑓‘suc 𝑏))
126124fvresd 6842 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏) = (𝑓𝑏))
127 ordsucelsuc 7755 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord suc 𝑖 → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
128111, 127syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
129128biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → suc 𝑏 ∈ suc suc 𝑖)
130129fvresd 6842 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏) = (𝑓‘suc 𝑏))
131125, 126, 1303brtr4d 5124 . . . . . . . . . . . . . . . . . . 19 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
132131ralrimiva 3121 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
133 vex 3440 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
134133resex 5980 . . . . . . . . . . . . . . . . . . 19 (𝑓 ↾ suc suc 𝑖) ∈ V
135 fneq1 6573 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔 Fn suc suc 𝑖 ↔ (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖))
136 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘∅) = ((𝑓 ↾ suc suc 𝑖)‘∅))
137136eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘∅) = 𝑥 ↔ ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥))
138 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑖) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖))
139138eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘suc 𝑖) = (𝑓‘suc 𝑖) ↔ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)))
140137, 139anbi12d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ↔ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))))
141 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔𝑏) = ((𝑓 ↾ suc suc 𝑖)‘𝑏))
142 fveq1 6821 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑏) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
143141, 142breq12d 5105 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
144143ralbidv 3152 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
145135, 140, 1443anbi123d 1438 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))))
146134, 145spcev 3561 . . . . . . . . . . . . . . . . . 18 (((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
147107, 116, 121, 132, 146syl121anc 1377 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
148 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑅𝑆)
149 simpr3 1197 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
150 ssbr 5136 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅𝑆 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
151150ralimdv 3143 . . . . . . . . . . . . . . . . . . . . 21 (𝑅𝑆 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
152148, 149, 151sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎))
153 fveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓𝑎) = (𝑓‘suc 𝑖))
154 suceq 6375 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = suc 𝑖 → suc 𝑎 = suc suc 𝑖)
155154fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑖))
156153, 155breq12d 5105 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = suc 𝑖 → ((𝑓𝑎)𝑆(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
157156rspcv 3573 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑖 ∈ suc suc 𝑖 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
158119, 152, 157mpsyl 68 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖))
159 simpr2r 1234 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑖) = 𝑦)
160158, 159breqtrd 5118 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆𝑦)
161 breq1 5095 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓‘suc 𝑖) → (𝑧𝑆𝑦 ↔ (𝑓‘suc 𝑖)𝑆𝑦))
162101, 161anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓‘suc 𝑖) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ (𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦)))
16396, 162spcev 3561 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
164 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
165 vex 3440 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
166164, 165brco 5813 . . . . . . . . . . . . . . . . . . . 20 (𝑥(𝑆𝑆)𝑦 ↔ ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
167163, 166sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥(𝑆𝑆)𝑦)
168 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑆𝑆) ⊆ 𝑆)
169168ssbrd 5135 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥(𝑆𝑆)𝑦𝑥𝑆𝑦))
170167, 169syl5 34 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥𝑆𝑦))
171160, 170mpan2d 694 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥𝑆(𝑓‘suc 𝑖) → 𝑥𝑆𝑦))
172147, 171embantd 59 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦))
173172ex 412 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦)))
174173com23 86 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
175103, 174syl5 34 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
1761753impia 1117 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
177176exlimdv 1933 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
178177alrimiv 1927 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
1791783exp 1119 . . . . . . . . 9 (𝑖 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
180179a2d 29 . . . . . . . 8 (𝑖 ∈ ω → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
18124, 63, 75, 87, 95, 180finds 7829 . . . . . . 7 (𝑛 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
182181com12 32 . . . . . 6 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑛 ∈ ω → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
183182ralrimiv 3120 . . . . 5 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
184 ralcom4 3255 . . . . . 6 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
185 r19.23v 3156 . . . . . . 7 (∀𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
186185albii 1819 . . . . . 6 (∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
187184, 186bitri 275 . . . . 5 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
188183, 187sylib 218 . . . 4 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
189 brttrcl2 9610 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
190 df-br 5093 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
191189, 190bitr3i 277 . . . . . 6 (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
192 df-br 5093 . . . . . 6 (𝑥𝑆𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆)
193191, 192imbi12i 350 . . . . 5 ((∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
194193albii 1819 . . . 4 (∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
195188, 194sylib 218 . . 3 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
196195alrimiv 1927 . 2 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
197 relttrcl 9608 . . 3 Rel t++𝑅
198 ssrel 5726 . . 3 (Rel t++𝑅 → (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
199197, 198ax-mp 5 . 2 (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
200196, 199sylibr 234 1 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  wss 3903  c0 4284  {csn 4577  cop 4583   class class class wbr 5092  cres 5621  ccom 5623  Rel wrel 5624  Ord word 6306  suc csuc 6309   Fn wfn 6477  cfv 6482  ωcom 7799  1oc1o 8381  t++cttrcl 9603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-ttrcl 9604
This theorem is referenced by:  dfttrcl2  9620
  Copyright terms: Public domain W3C validator