MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclss Structured version   Visualization version   GIF version

Theorem ttrclss 9789
Description: If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.)
Assertion
Ref Expression
ttrclss ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)

Proof of Theorem ttrclss
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 𝑛 𝑚 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 6461 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = suc ∅)
2 suceq 6461 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc ∅ → suc suc 𝑚 = suc suc ∅)
31, 2syl 17 . . . . . . . . . . . . . 14 (𝑚 = ∅ → suc suc 𝑚 = suc suc ∅)
43fneq2d 6673 . . . . . . . . . . . . 13 (𝑚 = ∅ → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc ∅))
5 df-1o 8522 . . . . . . . . . . . . . . . 16 1o = suc ∅
61, 5eqtr4di 2798 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = 1o)
76fveqeq2d 6928 . . . . . . . . . . . . . 14 (𝑚 = ∅ → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘1o) = 𝑦))
87anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = ∅ → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦)))
9 df1o2 8529 . . . . . . . . . . . . . . . 16 1o = {∅}
106, 9eqtrdi 2796 . . . . . . . . . . . . . . 15 (𝑚 = ∅ → suc 𝑚 = {∅})
1110raleqdv 3334 . . . . . . . . . . . . . 14 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
12 0ex 5325 . . . . . . . . . . . . . . 15 ∅ ∈ V
13 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓𝑎) = (𝑓‘∅))
14 suceq 6461 . . . . . . . . . . . . . . . . . 18 (𝑎 = ∅ → suc 𝑎 = suc ∅)
1514, 5eqtr4di 2798 . . . . . . . . . . . . . . . . 17 (𝑎 = ∅ → suc 𝑎 = 1o)
1615fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑎 = ∅ → (𝑓‘suc 𝑎) = (𝑓‘1o))
1713, 16breq12d 5179 . . . . . . . . . . . . . . 15 (𝑎 = ∅ → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
1812, 17ralsn 4705 . . . . . . . . . . . . . 14 (∀𝑎 ∈ {∅} (𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o))
1911, 18bitrdi 287 . . . . . . . . . . . . 13 (𝑚 = ∅ → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓‘∅)𝑅(𝑓‘1o)))
204, 8, 193anbi123d 1436 . . . . . . . . . . . 12 (𝑚 = ∅ → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2120exbidv 1920 . . . . . . . . . . 11 (𝑚 = ∅ → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o))))
2221imbi1d 341 . . . . . . . . . 10 (𝑚 = ∅ → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2322albidv 1919 . . . . . . . . 9 (𝑚 = ∅ → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦)))
2423imbi2d 340 . . . . . . . 8 (𝑚 = ∅ → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))))
25 suceq 6461 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑖 → suc 𝑚 = suc 𝑖)
26 suceq 6461 . . . . . . . . . . . . . . . . 17 (suc 𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → suc suc 𝑚 = suc suc 𝑖)
2827fneq2d 6673 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑖))
2925fveqeq2d 6928 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑖) = 𝑦))
3029anbi2d 629 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦)))
3125raleqdv 3334 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
32 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓𝑎) = (𝑓𝑏))
33 suceq 6461 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → suc 𝑎 = suc 𝑏)
3433fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑏 → (𝑓‘suc 𝑎) = (𝑓‘suc 𝑏))
3532, 34breq12d 5179 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑏 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ (𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3635cbvralvw 3243 . . . . . . . . . . . . . . . 16 (∀𝑎 ∈ suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))
3731, 36bitrdi 287 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)))
3828, 30, 373anbi123d 1436 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
3938exbidv 1920 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏))))
40 fneq1 6670 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓 Fn suc suc 𝑖𝑔 Fn suc suc 𝑖))
41 fveq1 6919 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘∅) = (𝑔‘∅))
4241eqeq1d 2742 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘∅) = 𝑥 ↔ (𝑔‘∅) = 𝑥))
43 fveq1 6919 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑖) = (𝑔‘suc 𝑖))
4443eqeq1d 2742 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑦))
4542, 44anbi12d 631 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦)))
46 fveq1 6919 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓𝑏) = (𝑔𝑏))
47 fveq1 6919 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → (𝑓‘suc 𝑏) = (𝑔‘suc 𝑏))
4846, 47breq12d 5179 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → ((𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ (𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
4948ralbidv 3184 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5040, 45, 493anbi123d 1436 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5150cbvexvw 2036 . . . . . . . . . . . . 13 (∃𝑓(𝑓 Fn suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑓𝑏)𝑅(𝑓‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
5239, 51bitrdi 287 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5352imbi1d 341 . . . . . . . . . . 11 (𝑚 = 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
5453albidv 1919 . . . . . . . . . 10 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦)))
55 eqeq2 2752 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((𝑔‘suc 𝑖) = 𝑦 ↔ (𝑔‘suc 𝑖) = 𝑧))
5655anbi2d 629 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧)))
57563anbi2d 1441 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
5857exbidv 1920 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
59 breq2 5170 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑆𝑦𝑥𝑆𝑧))
6058, 59imbi12d 344 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6160cbvalvw 2035 . . . . . . . . . 10 (∀𝑦(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑦) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))
6254, 61bitrdi 287 . . . . . . . . 9 (𝑚 = 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)))
6362imbi2d 340 . . . . . . . 8 (𝑚 = 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧))))
64 suceq 6461 . . . . . . . . . . . . . . 15 (𝑚 = suc 𝑖 → suc 𝑚 = suc suc 𝑖)
65 suceq 6461 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6664, 65syl 17 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → suc suc 𝑚 = suc suc suc 𝑖)
6766fneq2d 6673 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc suc 𝑖))
6864fveqeq2d 6928 . . . . . . . . . . . . . 14 (𝑚 = suc 𝑖 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc suc 𝑖) = 𝑦))
6968anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦)))
7064raleqdv 3334 . . . . . . . . . . . . 13 (𝑚 = suc 𝑖 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
7167, 69, 703anbi123d 1436 . . . . . . . . . . . 12 (𝑚 = suc 𝑖 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7271exbidv 1920 . . . . . . . . . . 11 (𝑚 = suc 𝑖 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
7372imbi1d 341 . . . . . . . . . 10 (𝑚 = suc 𝑖 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7473albidv 1919 . . . . . . . . 9 (𝑚 = suc 𝑖 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
7574imbi2d 340 . . . . . . . 8 (𝑚 = suc 𝑖 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
76 suceq 6461 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → suc 𝑚 = suc 𝑛)
77 suceq 6461 . . . . . . . . . . . . . . 15 (suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7876, 77syl 17 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛)
7978fneq2d 6673 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑓 Fn suc suc 𝑚𝑓 Fn suc suc 𝑛))
8076fveqeq2d 6928 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝑓‘suc 𝑚) = 𝑦 ↔ (𝑓‘suc 𝑛) = 𝑦))
8180anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ↔ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦)))
8276raleqdv 3334 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎) ↔ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
8379, 81, 823anbi123d 1436 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ (𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8483exbidv 1920 . . . . . . . . . . 11 (𝑚 = 𝑛 → (∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎))))
8584imbi1d 341 . . . . . . . . . 10 (𝑚 = 𝑛 → ((∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8685albidv 1919 . . . . . . . . 9 (𝑚 = 𝑛 → (∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
8786imbi2d 340 . . . . . . . 8 (𝑚 = 𝑛 → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑚 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑚) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑚(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)) ↔ ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
88 breq12 5171 . . . . . . . . . . . . 13 (((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) → ((𝑓‘∅)𝑅(𝑓‘1o) ↔ 𝑥𝑅𝑦))
8988biimpa 476 . . . . . . . . . . . 12 ((((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
90893adant1 1130 . . . . . . . . . . 11 ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑅𝑦)
91 ssbr 5210 . . . . . . . . . . . 12 (𝑅𝑆 → (𝑥𝑅𝑦𝑥𝑆𝑦))
9291adantr 480 . . . . . . . . . . 11 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑥𝑅𝑦𝑥𝑆𝑦))
9390, 92syl5 34 . . . . . . . . . 10 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9493exlimdv 1932 . . . . . . . . 9 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
9594alrimiv 1926 . . . . . . . 8 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc ∅ ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘1o) = 𝑦) ∧ (𝑓‘∅)𝑅(𝑓‘1o)) → 𝑥𝑆𝑦))
96 fvex 6933 . . . . . . . . . . . . . . 15 (𝑓‘suc 𝑖) ∈ V
97 eqeq2 2752 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔‘suc 𝑖) = 𝑧 ↔ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)))
9897anbi2d 629 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑓‘suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ↔ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖))))
99983anbi2d 1441 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑓‘suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ (𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
10099exbidv 1920 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏))))
101 breq2 5170 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑓‘suc 𝑖) → (𝑥𝑆𝑧𝑥𝑆(𝑓‘suc 𝑖)))
102100, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑧 = (𝑓‘suc 𝑖) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) ↔ (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖))))
10396, 102spcv 3618 . . . . . . . . . . . . . 14 (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → (∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)))
104 simpr1 1194 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑓 Fn suc suc suc 𝑖)
105 sssucid 6475 . . . . . . . . . . . . . . . . . . 19 suc suc 𝑖 ⊆ suc suc suc 𝑖
106 fnssres 6703 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn suc suc suc 𝑖 ∧ suc suc 𝑖 ⊆ suc suc suc 𝑖) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
107104, 105, 106sylancl 585 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖)
108 peano2 7929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ ω → suc 𝑖 ∈ ω)
109108ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → suc 𝑖 ∈ ω)
110 nnord 7911 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑖 ∈ ω → Ord suc 𝑖)
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → Ord suc 𝑖)
112 0elsuc 7871 . . . . . . . . . . . . . . . . . . . . 21 (Ord suc 𝑖 → ∅ ∈ suc suc 𝑖)
113111, 112syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∅ ∈ suc suc 𝑖)
114113fvresd 6940 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = (𝑓‘∅))
115 simpr2l 1232 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘∅) = 𝑥)
116114, 115eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥)
117 vex 3492 . . . . . . . . . . . . . . . . . . . . 21 𝑖 ∈ V
118117sucex 7842 . . . . . . . . . . . . . . . . . . . 20 suc 𝑖 ∈ V
119118sucid 6477 . . . . . . . . . . . . . . . . . . 19 suc 𝑖 ∈ suc suc 𝑖
120 fvres 6939 . . . . . . . . . . . . . . . . . . 19 (suc 𝑖 ∈ suc suc 𝑖 → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
121119, 120mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))
122 simplr3 1217 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
123 elelsuc 6468 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 ∈ suc 𝑖𝑏 ∈ suc suc 𝑖)
124123adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → 𝑏 ∈ suc suc 𝑖)
12535, 122, 124rspcdva 3636 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → (𝑓𝑏)𝑅(𝑓‘suc 𝑏))
126124fvresd 6940 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏) = (𝑓𝑏))
127 ordsucelsuc 7858 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord suc 𝑖 → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
128111, 127syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑏 ∈ suc 𝑖 ↔ suc 𝑏 ∈ suc suc 𝑖))
129128biimpa 476 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → suc 𝑏 ∈ suc suc 𝑖)
130129fvresd 6940 . . . . . . . . . . . . . . . . . . . 20 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏) = (𝑓‘suc 𝑏))
131125, 126, 1303brtr4d 5198 . . . . . . . . . . . . . . . . . . 19 ((((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) ∧ 𝑏 ∈ suc 𝑖) → ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
132131ralrimiva 3152 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
133 vex 3492 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
134133resex 6058 . . . . . . . . . . . . . . . . . . 19 (𝑓 ↾ suc suc 𝑖) ∈ V
135 fneq1 6670 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔 Fn suc suc 𝑖 ↔ (𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖))
136 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘∅) = ((𝑓 ↾ suc suc 𝑖)‘∅))
137136eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘∅) = 𝑥 ↔ ((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥))
138 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑖) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖))
139138eqeq1d 2742 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔‘suc 𝑖) = (𝑓‘suc 𝑖) ↔ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)))
140137, 139anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ↔ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖))))
141 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔𝑏) = ((𝑓 ↾ suc suc 𝑖)‘𝑏))
142 fveq1 6919 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (𝑔‘suc 𝑏) = ((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))
143141, 142breq12d 5179 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
144143ralbidv 3184 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = (𝑓 ↾ suc suc 𝑖) → (∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏) ↔ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)))
145135, 140, 1443anbi123d 1436 . . . . . . . . . . . . . . . . . . 19 (𝑔 = (𝑓 ↾ suc suc 𝑖) → ((𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) ↔ ((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏))))
146134, 145spcev 3619 . . . . . . . . . . . . . . . . . 18 (((𝑓 ↾ suc suc 𝑖) Fn suc suc 𝑖 ∧ (((𝑓 ↾ suc suc 𝑖)‘∅) = 𝑥 ∧ ((𝑓 ↾ suc suc 𝑖)‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖((𝑓 ↾ suc suc 𝑖)‘𝑏)𝑅((𝑓 ↾ suc suc 𝑖)‘suc 𝑏)) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
147107, 116, 121, 132, 146syl121anc 1375 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)))
148 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → 𝑅𝑆)
149 simpr3 1196 . . . . . . . . . . . . . . . . . . . . 21 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))
150 ssbr 5210 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅𝑆 → ((𝑓𝑎)𝑅(𝑓‘suc 𝑎) → (𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
151150ralimdv 3175 . . . . . . . . . . . . . . . . . . . . 21 (𝑅𝑆 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎)))
152148, 149, 151sylc 65 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎))
153 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓𝑎) = (𝑓‘suc 𝑖))
154 suceq 6461 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = suc 𝑖 → suc 𝑎 = suc suc 𝑖)
155154fveq2d 6924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = suc 𝑖 → (𝑓‘suc 𝑎) = (𝑓‘suc suc 𝑖))
156153, 155breq12d 5179 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = suc 𝑖 → ((𝑓𝑎)𝑆(𝑓‘suc 𝑎) ↔ (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
157156rspcv 3631 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑖 ∈ suc suc 𝑖 → (∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑆(𝑓‘suc 𝑎) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖)))
158119, 152, 157mpsyl 68 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆(𝑓‘suc suc 𝑖))
159 simpr2r 1233 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc suc 𝑖) = 𝑦)
160158, 159breqtrd 5192 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑓‘suc 𝑖)𝑆𝑦)
161 breq1 5169 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = (𝑓‘suc 𝑖) → (𝑧𝑆𝑦 ↔ (𝑓‘suc 𝑖)𝑆𝑦))
162101, 161anbi12d 631 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑓‘suc 𝑖) → ((𝑥𝑆𝑧𝑧𝑆𝑦) ↔ (𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦)))
16396, 162spcev 3619 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
164 vex 3492 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
165 vex 3492 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
166164, 165brco 5895 . . . . . . . . . . . . . . . . . . . 20 (𝑥(𝑆𝑆)𝑦 ↔ ∃𝑧(𝑥𝑆𝑧𝑧𝑆𝑦))
167163, 166sylibr 234 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥(𝑆𝑆)𝑦)
168 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑆𝑆) ⊆ 𝑆)
169168ssbrd 5209 . . . . . . . . . . . . . . . . . . 19 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥(𝑆𝑆)𝑦𝑥𝑆𝑦))
170167, 169syl5 34 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((𝑥𝑆(𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖)𝑆𝑦) → 𝑥𝑆𝑦))
171160, 170mpan2d 693 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → (𝑥𝑆(𝑓‘suc 𝑖) → 𝑥𝑆𝑦))
172147, 171embantd 59 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) ∧ (𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎))) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦))
173172ex 412 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → 𝑥𝑆𝑦)))
174173com23 86 . . . . . . . . . . . . . 14 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → ((∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = (𝑓‘suc 𝑖)) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆(𝑓‘suc 𝑖)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
175103, 174syl5 34 . . . . . . . . . . . . 13 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆)) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
1761753impia 1117 . . . . . . . . . . . 12 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
177176exlimdv 1932 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → (∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
178177alrimiv 1926 . . . . . . . . . 10 ((𝑖 ∈ ω ∧ (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) ∧ ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
1791783exp 1119 . . . . . . . . 9 (𝑖 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
180179a2d 29 . . . . . . . 8 (𝑖 ∈ ω → (((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑧(∃𝑔(𝑔 Fn suc suc 𝑖 ∧ ((𝑔‘∅) = 𝑥 ∧ (𝑔‘suc 𝑖) = 𝑧) ∧ ∀𝑏 ∈ suc 𝑖(𝑔𝑏)𝑅(𝑔‘suc 𝑏)) → 𝑥𝑆𝑧)) → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc suc 𝑖 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc suc 𝑖) = 𝑦) ∧ ∀𝑎 ∈ suc suc 𝑖(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))))
18124, 63, 75, 87, 95, 180finds 7936 . . . . . . 7 (𝑛 ∈ ω → ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
182181com12 32 . . . . . 6 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → (𝑛 ∈ ω → ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦)))
183182ralrimiv 3151 . . . . 5 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
184 ralcom4 3292 . . . . . 6 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
185 r19.23v 3189 . . . . . . 7 (∀𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
186185albii 1817 . . . . . 6 (∀𝑦𝑛 ∈ ω (∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
187184, 186bitri 275 . . . . 5 (∀𝑛 ∈ ω ∀𝑦(∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
188183, 187sylib 218 . . . 4 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦))
189 brttrcl2 9783 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)))
190 df-br 5167 . . . . . . 7 (𝑥t++𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
191189, 190bitr3i 277 . . . . . 6 (∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) ↔ ⟨𝑥, 𝑦⟩ ∈ t++𝑅)
192 df-br 5167 . . . . . 6 (𝑥𝑆𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑆)
193191, 192imbi12i 350 . . . . 5 ((∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
194193albii 1817 . . . 4 (∀𝑦(∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘suc 𝑛) = 𝑦) ∧ ∀𝑎 ∈ suc 𝑛(𝑓𝑎)𝑅(𝑓‘suc 𝑎)) → 𝑥𝑆𝑦) ↔ ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
195188, 194sylib 218 . . 3 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
196195alrimiv 1926 . 2 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
197 relttrcl 9781 . . 3 Rel t++𝑅
198 ssrel 5806 . . 3 (Rel t++𝑅 → (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆)))
199197, 198ax-mp 5 . 2 (t++𝑅𝑆 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ t++𝑅 → ⟨𝑥, 𝑦⟩ ∈ 𝑆))
200196, 199sylibr 234 1 ((𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆) → t++𝑅𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166  cres 5702  ccom 5704  Rel wrel 5705  Ord word 6394  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  1oc1o 8515  t++cttrcl 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-ttrcl 9777
This theorem is referenced by:  dfttrcl2  9793
  Copyright terms: Public domain W3C validator