Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brelg | Structured version Visualization version GIF version |
Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017.) |
Ref | Expression |
---|---|
brelg | ⊢ ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5097 | . . 3 ⊢ (𝑅 ⊆ (𝐶 × 𝐷) → (𝐴𝑅𝐵 → 𝐴(𝐶 × 𝐷)𝐵)) | |
2 | 1 | imp 410 | . 2 ⊢ ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → 𝐴(𝐶 × 𝐷)𝐵) |
3 | brxp 5598 | . 2 ⊢ (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
4 | 2, 3 | sylib 221 | 1 ⊢ ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 ⊆ wss 3866 class class class wbr 5053 × cxp 5549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 |
This theorem is referenced by: fpwrelmap 30788 |
Copyright terms: Public domain | W3C validator |