Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brelg Structured version   Visualization version   GIF version

Theorem brelg 30025
Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017.)
Assertion
Ref Expression
brelg ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴𝐶𝐵𝐷))

Proof of Theorem brelg
StepHypRef Expression
1 ssbr 5000 . . 3 (𝑅 ⊆ (𝐶 × 𝐷) → (𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵))
21imp 407 . 2 ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → 𝐴(𝐶 × 𝐷)𝐵)
3 brxp 5481 . 2 (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
42, 3sylib 219 1 ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2079  wss 3854   class class class wbr 4956   × cxp 5433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-br 4957  df-opab 5019  df-xp 5441
This theorem is referenced by:  fpwrelmap  30130
  Copyright terms: Public domain W3C validator