Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brelg Structured version   Visualization version   GIF version

Theorem brelg 32537
Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017.)
Assertion
Ref Expression
brelg ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴𝐶𝐵𝐷))

Proof of Theorem brelg
StepHypRef Expression
1 ssbr 5151 . . 3 (𝑅 ⊆ (𝐶 × 𝐷) → (𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵))
21imp 406 . 2 ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → 𝐴(𝐶 × 𝐷)𝐵)
3 brxp 5687 . 2 (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
42, 3sylib 218 1 ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3914   class class class wbr 5107   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644
This theorem is referenced by:  fpwrelmap  32656
  Copyright terms: Public domain W3C validator