Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 3934 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
3 | df-br 5097 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
4 | df-br 5097 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3901 〈cop 4583 class class class wbr 5096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3444 df-in 3908 df-ss 3918 df-br 5097 |
This theorem is referenced by: ssbr 5140 sess1 5592 brrelex12 5674 eqbrrdva 5815 predtrss 6265 ersym 8585 ertr 8588 ttrclss 9581 fpwwe2lem5 10496 fpwwe2lem6 10497 fpwwe2lem8 10499 fpwwe2lem11 10502 fpwwe2lem12 10503 fpwwe2 10504 coss12d 14782 fthres2 17745 invfuc 17789 pospo 18160 dirref 18416 efgcpbl 19457 frgpuplem 19473 subrguss 20143 znleval 20867 ustref 23475 ustuqtop4 23501 metider 32140 mclsppslem 33842 fundmpss 34024 eqvrelsym 36923 eqvreltr 36925 iunrelexpuztr 41700 frege96d 41730 frege91d 41732 frege98d 41734 frege124d 41742 grucollcld 42251 |
Copyright terms: Public domain | W3C validator |