MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssbrd Structured version   Visualization version   GIF version

Theorem ssbrd 5190
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ssbrd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssbrd (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))

Proof of Theorem ssbrd
StepHypRef Expression
1 ssbrd.1 . . 3 (𝜑𝐴𝐵)
21sseld 3993 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ 𝐴 → ⟨𝐶, 𝐷⟩ ∈ 𝐵))
3 df-br 5148 . 2 (𝐶𝐴𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐴)
4 df-br 5148 . 2 (𝐶𝐵𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐵)
52, 3, 43imtr4g 296 1 (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  wss 3962  cop 4636   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-clel 2813  df-ss 3979  df-br 5148
This theorem is referenced by:  ssbr  5191  sess1  5653  brrelex12  5740  eqbrrdva  5882  predtrss  6344  ersym  8755  ertr  8758  ttrclss  9757  fpwwe2lem5  10672  fpwwe2lem6  10673  fpwwe2lem8  10675  fpwwe2lem11  10678  fpwwe2lem12  10679  fpwwe2  10680  coss12d  15007  fthres2  17985  invfuc  18030  pospo  18402  dirref  18658  efgcpbl  19788  frgpuplem  19804  subrguss  20603  znleval  21590  ustref  24242  ustuqtop4  24268  metider  33854  mclsppslem  35567  fundmpss  35747  eqvrelsym  38586  eqvreltr  38588  iunrelexpuztr  43708  frege96d  43738  frege91d  43740  frege98d  43742  frege124d  43750  grucollcld  44255
  Copyright terms: Public domain W3C validator