Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 3916 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
3 | df-br 5071 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
4 | df-br 5071 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 |
This theorem is referenced by: ssbr 5114 sess1 5548 brrelex12 5630 eqbrrdva 5767 predtrss 6214 ersym 8468 ertr 8471 fpwwe2lem5 10322 fpwwe2lem6 10323 fpwwe2lem8 10325 fpwwe2lem11 10328 fpwwe2lem12 10329 fpwwe2 10330 coss12d 14611 fthres2 17564 invfuc 17608 pospo 17978 dirref 18234 efgcpbl 19277 frgpuplem 19293 subrguss 19954 znleval 20674 ustref 23278 ustuqtop4 23304 metider 31746 mclsppslem 33445 fundmpss 33646 ttrclss 33706 eqvrelsym 36645 eqvreltr 36647 iunrelexpuztr 41216 frege96d 41246 frege91d 41248 frege98d 41250 frege124d 41258 grucollcld 41767 |
Copyright terms: Public domain | W3C validator |