| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version | ||
| Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3933 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
| 3 | df-br 5092 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
| 4 | df-br 5092 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 〈cop 4582 class class class wbr 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-ss 3919 df-br 5092 |
| This theorem is referenced by: ssbr 5135 sess1 5581 brrelex12 5668 eqbrrdva 5809 predtrss 6269 ersym 8634 ertr 8637 ttrclss 9610 fpwwe2lem5 10526 fpwwe2lem6 10527 fpwwe2lem8 10529 fpwwe2lem11 10532 fpwwe2lem12 10533 fpwwe2 10534 coss12d 14879 fthres2 17841 invfuc 17884 pospo 18249 dirref 18507 efgcpbl 19669 frgpuplem 19685 subrguss 20503 znleval 21492 ustref 24135 ustuqtop4 24160 metider 33905 mclsppslem 35625 fundmpss 35809 eqvrelsym 38648 eqvreltr 38650 iunrelexpuztr 43758 frege96d 43788 frege91d 43790 frege98d 43792 frege124d 43800 grucollcld 44299 |
| Copyright terms: Public domain | W3C validator |