| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version | ||
| Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3929 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
| 3 | df-br 5096 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
| 4 | df-br 5096 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 〈cop 4583 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2808 df-ss 3915 df-br 5096 |
| This theorem is referenced by: ssbr 5139 sess1 5586 brrelex12 5673 eqbrrdva 5815 predtrss 6276 ersym 8642 ertr 8645 ttrclss 9619 fpwwe2lem5 10535 fpwwe2lem6 10536 fpwwe2lem8 10538 fpwwe2lem11 10541 fpwwe2lem12 10542 fpwwe2 10543 coss12d 14883 fthres2 17845 invfuc 17888 pospo 18253 dirref 18511 efgcpbl 19672 frgpuplem 19688 subrguss 20506 znleval 21495 ustref 24137 ustuqtop4 24162 metider 33930 mclsppslem 35650 fundmpss 35834 eqvrelsym 38724 eqvreltr 38726 iunrelexpuztr 43839 frege96d 43869 frege91d 43871 frege98d 43873 frege124d 43881 grucollcld 44380 |
| Copyright terms: Public domain | W3C validator |