![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 3858 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
3 | df-br 4930 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
4 | df-br 4930 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 288 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 ⊆ wss 3830 〈cop 4447 class class class wbr 4929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2751 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2760 df-cleq 2772 df-clel 2847 df-in 3837 df-ss 3844 df-br 4930 |
This theorem is referenced by: ssbr 4973 sess1 5375 brrelex12 5454 eqbrrdva 5590 ersym 8101 ertr 8104 fpwwe2lem6 9855 fpwwe2lem7 9856 fpwwe2lem9 9858 fpwwe2lem12 9861 fpwwe2lem13 9862 fpwwe2 9863 coss12d 14193 fthres2 17060 invfuc 17102 pospo 17441 dirref 17703 efgcpbl 18642 frgpuplem 18658 subrguss 19273 znleval 20403 ustref 22530 ustuqtop4 22556 metider 30775 mclsppslem 32347 fundmpss 32526 eqvrelsym 35282 eqvreltr 35284 iunrelexpuztr 39424 frege96d 39454 frege91d 39456 frege98d 39458 frege124d 39466 grucollcld 39968 |
Copyright terms: Public domain | W3C validator |