![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 3993 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
3 | df-br 5148 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
4 | df-br 5148 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3962 〈cop 4636 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-clel 2813 df-ss 3979 df-br 5148 |
This theorem is referenced by: ssbr 5191 sess1 5653 brrelex12 5740 eqbrrdva 5882 predtrss 6344 ersym 8755 ertr 8758 ttrclss 9757 fpwwe2lem5 10672 fpwwe2lem6 10673 fpwwe2lem8 10675 fpwwe2lem11 10678 fpwwe2lem12 10679 fpwwe2 10680 coss12d 15007 fthres2 17985 invfuc 18030 pospo 18402 dirref 18658 efgcpbl 19788 frgpuplem 19804 subrguss 20603 znleval 21590 ustref 24242 ustuqtop4 24268 metider 33854 mclsppslem 35567 fundmpss 35747 eqvrelsym 38586 eqvreltr 38588 iunrelexpuztr 43708 frege96d 43738 frege91d 43740 frege98d 43742 frege124d 43750 grucollcld 44255 |
Copyright terms: Public domain | W3C validator |