MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssbrd Structured version   Visualization version   GIF version

Theorem ssbrd 5117
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ssbrd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssbrd (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))

Proof of Theorem ssbrd
StepHypRef Expression
1 ssbrd.1 . . 3 (𝜑𝐴𝐵)
21sseld 3920 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∈ 𝐴 → ⟨𝐶, 𝐷⟩ ∈ 𝐵))
3 df-br 5075 . 2 (𝐶𝐴𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐴)
4 df-br 5075 . 2 (𝐶𝐵𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝐵)
52, 3, 43imtr4g 296 1 (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3887  cop 4567   class class class wbr 5074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-br 5075
This theorem is referenced by:  ssbr  5118  sess1  5557  brrelex12  5639  eqbrrdva  5778  predtrss  6225  ersym  8510  ertr  8513  ttrclss  9478  fpwwe2lem5  10391  fpwwe2lem6  10392  fpwwe2lem8  10394  fpwwe2lem11  10397  fpwwe2lem12  10398  fpwwe2  10399  coss12d  14683  fthres2  17648  invfuc  17692  pospo  18063  dirref  18319  efgcpbl  19362  frgpuplem  19378  subrguss  20039  znleval  20762  ustref  23370  ustuqtop4  23396  metider  31844  mclsppslem  33545  fundmpss  33740  eqvrelsym  36718  eqvreltr  36720  iunrelexpuztr  41327  frege96d  41357  frege91d  41359  frege98d  41361  frege124d  41369  grucollcld  41878
  Copyright terms: Public domain W3C validator