![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 4007 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
3 | df-br 5167 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
4 | df-br 5167 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 df-ss 3993 df-br 5167 |
This theorem is referenced by: ssbr 5210 sess1 5665 brrelex12 5752 eqbrrdva 5894 predtrss 6354 ersym 8775 ertr 8778 ttrclss 9789 fpwwe2lem5 10704 fpwwe2lem6 10705 fpwwe2lem8 10707 fpwwe2lem11 10710 fpwwe2lem12 10711 fpwwe2 10712 coss12d 15021 fthres2 17999 invfuc 18044 pospo 18415 dirref 18671 efgcpbl 19798 frgpuplem 19814 subrguss 20615 znleval 21596 ustref 24248 ustuqtop4 24274 metider 33840 mclsppslem 35551 fundmpss 35730 eqvrelsym 38561 eqvreltr 38563 iunrelexpuztr 43681 frege96d 43711 frege91d 43713 frege98d 43715 frege124d 43723 grucollcld 44229 |
Copyright terms: Public domain | W3C validator |