Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version |
Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | sseld 3920 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
3 | df-br 5075 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
4 | df-br 5075 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 〈cop 4567 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 |
This theorem is referenced by: ssbr 5118 sess1 5557 brrelex12 5639 eqbrrdva 5778 predtrss 6225 ersym 8510 ertr 8513 ttrclss 9478 fpwwe2lem5 10391 fpwwe2lem6 10392 fpwwe2lem8 10394 fpwwe2lem11 10397 fpwwe2lem12 10398 fpwwe2 10399 coss12d 14683 fthres2 17648 invfuc 17692 pospo 18063 dirref 18319 efgcpbl 19362 frgpuplem 19378 subrguss 20039 znleval 20762 ustref 23370 ustuqtop4 23396 metider 31844 mclsppslem 33545 fundmpss 33740 eqvrelsym 36718 eqvreltr 36720 iunrelexpuztr 41327 frege96d 41357 frege91d 41359 frege98d 41361 frege124d 41369 grucollcld 41878 |
Copyright terms: Public domain | W3C validator |