| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version | ||
| Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3945 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
| 3 | df-br 5108 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
| 4 | df-br 5108 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3931 df-br 5108 |
| This theorem is referenced by: ssbr 5151 sess1 5603 brrelex12 5690 eqbrrdva 5833 predtrss 6295 ersym 8683 ertr 8686 ttrclss 9673 fpwwe2lem5 10588 fpwwe2lem6 10589 fpwwe2lem8 10591 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwe2 10596 coss12d 14938 fthres2 17896 invfuc 17939 pospo 18304 dirref 18560 efgcpbl 19686 frgpuplem 19702 subrguss 20496 znleval 21464 ustref 24106 ustuqtop4 24132 metider 33884 mclsppslem 35570 fundmpss 35754 eqvrelsym 38596 eqvreltr 38598 iunrelexpuztr 43708 frege96d 43738 frege91d 43740 frege98d 43742 frege124d 43750 grucollcld 44249 |
| Copyright terms: Public domain | W3C validator |