| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version | ||
| Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3936 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
| 3 | df-br 5096 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
| 4 | df-br 5096 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3922 df-br 5096 |
| This theorem is referenced by: ssbr 5139 sess1 5588 brrelex12 5675 eqbrrdva 5816 predtrss 6274 ersym 8644 ertr 8647 ttrclss 9635 fpwwe2lem5 10548 fpwwe2lem6 10549 fpwwe2lem8 10551 fpwwe2lem11 10554 fpwwe2lem12 10555 fpwwe2 10556 coss12d 14897 fthres2 17859 invfuc 17902 pospo 18267 dirref 18525 efgcpbl 19653 frgpuplem 19669 subrguss 20490 znleval 21479 ustref 24122 ustuqtop4 24148 metider 33863 mclsppslem 35558 fundmpss 35742 eqvrelsym 38584 eqvreltr 38586 iunrelexpuztr 43695 frege96d 43725 frege91d 43727 frege98d 43729 frege124d 43737 grucollcld 44236 |
| Copyright terms: Public domain | W3C validator |