| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version | ||
| Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3957 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
| 3 | df-br 5120 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
| 4 | df-br 5120 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3926 〈cop 4607 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 df-ss 3943 df-br 5120 |
| This theorem is referenced by: ssbr 5163 sess1 5619 brrelex12 5706 eqbrrdva 5849 predtrss 6311 ersym 8731 ertr 8734 ttrclss 9734 fpwwe2lem5 10649 fpwwe2lem6 10650 fpwwe2lem8 10652 fpwwe2lem11 10655 fpwwe2lem12 10656 fpwwe2 10657 coss12d 14991 fthres2 17947 invfuc 17990 pospo 18355 dirref 18611 efgcpbl 19737 frgpuplem 19753 subrguss 20547 znleval 21515 ustref 24157 ustuqtop4 24183 metider 33925 mclsppslem 35605 fundmpss 35784 eqvrelsym 38623 eqvreltr 38625 iunrelexpuztr 43743 frege96d 43773 frege91d 43775 frege98d 43777 frege124d 43785 grucollcld 44284 |
| Copyright terms: Public domain | W3C validator |