| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbrd | Structured version Visualization version GIF version | ||
| Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ssbrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssbrd | ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 1 | sseld 3948 | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∈ 𝐴 → 〈𝐶, 𝐷〉 ∈ 𝐵)) |
| 3 | df-br 5111 | . 2 ⊢ (𝐶𝐴𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐴) | |
| 4 | df-br 5111 | . 2 ⊢ (𝐶𝐵𝐷 ↔ 〈𝐶, 𝐷〉 ∈ 𝐵) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 〈cop 4598 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 df-ss 3934 df-br 5111 |
| This theorem is referenced by: ssbr 5154 sess1 5606 brrelex12 5693 eqbrrdva 5836 predtrss 6298 ersym 8686 ertr 8689 ttrclss 9680 fpwwe2lem5 10595 fpwwe2lem6 10596 fpwwe2lem8 10598 fpwwe2lem11 10601 fpwwe2lem12 10602 fpwwe2 10603 coss12d 14945 fthres2 17903 invfuc 17946 pospo 18311 dirref 18567 efgcpbl 19693 frgpuplem 19709 subrguss 20503 znleval 21471 ustref 24113 ustuqtop4 24139 metider 33891 mclsppslem 35577 fundmpss 35761 eqvrelsym 38603 eqvreltr 38605 iunrelexpuztr 43715 frege96d 43745 frege91d 43747 frege98d 43749 frege124d 43757 grucollcld 44256 |
| Copyright terms: Public domain | W3C validator |