![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifeq0 | Structured version Visualization version GIF version |
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
Ref | Expression |
---|---|
ssdifeq0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 4210 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | ssdifin0 4477 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → (𝐴 ∩ 𝐴) = ∅) | |
3 | 1, 2 | eqtr3id 2778 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
4 | 0ss 4388 | . . 3 ⊢ ∅ ⊆ (𝐵 ∖ ∅) | |
5 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
6 | difeq2 4108 | . . . 4 ⊢ (𝐴 = ∅ → (𝐵 ∖ 𝐴) = (𝐵 ∖ ∅)) | |
7 | 5, 6 | sseq12d 4007 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅))) |
8 | 4, 7 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐵 ∖ 𝐴)) |
9 | 3, 8 | impbii 208 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∖ cdif 3937 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-in 3947 df-ss 3957 df-nul 4315 |
This theorem is referenced by: disjdifprg 32241 measxun2 33663 measssd 33668 pmeasmono 33778 |
Copyright terms: Public domain | W3C validator |