| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifeq0 | Structured version Visualization version GIF version | ||
| Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
| Ref | Expression |
|---|---|
| ssdifeq0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm 4193 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 2 | ssdifin0 4452 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → (𝐴 ∩ 𝐴) = ∅) | |
| 3 | 1, 2 | eqtr3id 2779 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
| 4 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ (𝐵 ∖ ∅) | |
| 5 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 6 | difeq2 4086 | . . . 4 ⊢ (𝐴 = ∅ → (𝐵 ∖ 𝐴) = (𝐵 ∖ ∅)) | |
| 7 | 5, 6 | sseq12d 3983 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅))) |
| 8 | 4, 7 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐵 ∖ 𝐴)) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: disjdifprg 32511 measxun2 34207 measssd 34212 pmeasmono 34322 |
| Copyright terms: Public domain | W3C validator |