Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdifeq0 | Structured version Visualization version GIF version |
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.) |
Ref | Expression |
---|---|
ssdifeq0 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm 4149 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
2 | ssdifin0 4413 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → (𝐴 ∩ 𝐴) = ∅) | |
3 | 1, 2 | eqtr3id 2793 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
4 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ (𝐵 ∖ ∅) | |
5 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
6 | difeq2 4047 | . . . 4 ⊢ (𝐴 = ∅ → (𝐵 ∖ 𝐴) = (𝐵 ∖ ∅)) | |
7 | 5, 6 | sseq12d 3950 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅))) |
8 | 4, 7 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ⊆ (𝐵 ∖ 𝐴)) |
9 | 3, 8 | impbii 208 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: disjdifprg 30815 measxun2 32078 measssd 32083 pmeasmono 32191 |
Copyright terms: Public domain | W3C validator |