MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifeq0 Structured version   Visualization version   GIF version

Theorem ssdifeq0 4414
Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
Assertion
Ref Expression
ssdifeq0 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)

Proof of Theorem ssdifeq0
StepHypRef Expression
1 inidm 4149 . . 3 (𝐴𝐴) = 𝐴
2 ssdifin0 4413 . . 3 (𝐴 ⊆ (𝐵𝐴) → (𝐴𝐴) = ∅)
31, 2eqtr3id 2793 . 2 (𝐴 ⊆ (𝐵𝐴) → 𝐴 = ∅)
4 0ss 4327 . . 3 ∅ ⊆ (𝐵 ∖ ∅)
5 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
6 difeq2 4047 . . . 4 (𝐴 = ∅ → (𝐵𝐴) = (𝐵 ∖ ∅))
75, 6sseq12d 3950 . . 3 (𝐴 = ∅ → (𝐴 ⊆ (𝐵𝐴) ↔ ∅ ⊆ (𝐵 ∖ ∅)))
84, 7mpbiri 257 . 2 (𝐴 = ∅ → 𝐴 ⊆ (𝐵𝐴))
93, 8impbii 208 1 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cdif 3880  cin 3882  wss 3883  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  disjdifprg  30815  measxun2  32078  measssd  32083  pmeasmono  32191
  Copyright terms: Public domain W3C validator