Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasmono Structured version   Visualization version   GIF version

Theorem pmeasmono 32697
Description: This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeasmono.1 (𝜑𝐴𝑅)
pmeasmono.2 (𝜑𝐵𝑅)
pmeasmono.3 (𝜑 → (𝐵𝐴) ∈ 𝑅)
pmeasmono.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
pmeasmono (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem pmeasmono
StepHypRef Expression
1 eqimss 3998 . . . . . . 7 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
2 ssdifeq0 4442 . . . . . . 7 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
31, 2sylib 217 . . . . . 6 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
43fveq2d 6841 . . . . 5 (𝐴 = (𝐵𝐴) → (𝑃𝐴) = (𝑃‘∅))
54adantl 482 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = (𝑃‘∅))
6 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
76adantr 481 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃‘∅) = 0)
85, 7eqtrd 2777 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = 0)
9 caraext.1 . . . . . 6 (𝜑𝑃:𝑅⟶(0[,]+∞))
10 pmeasmono.2 . . . . . 6 (𝜑𝐵𝑅)
119, 10ffvelcdmd 7030 . . . . 5 (𝜑 → (𝑃𝐵) ∈ (0[,]+∞))
12 elxrge0 13302 . . . . . 6 ((𝑃𝐵) ∈ (0[,]+∞) ↔ ((𝑃𝐵) ∈ ℝ* ∧ 0 ≤ (𝑃𝐵)))
1312simprbi 497 . . . . 5 ((𝑃𝐵) ∈ (0[,]+∞) → 0 ≤ (𝑃𝐵))
1411, 13syl 17 . . . 4 (𝜑 → 0 ≤ (𝑃𝐵))
1514adantr 481 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → 0 ≤ (𝑃𝐵))
168, 15eqbrtrd 5125 . 2 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
17 iccssxr 13275 . . . . 5 (0[,]+∞) ⊆ ℝ*
189adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝑃:𝑅⟶(0[,]+∞))
19 pmeasmono.1 . . . . . . 7 (𝜑𝐴𝑅)
2019adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴𝑅)
2118, 20ffvelcdmd 7030 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ (0[,]+∞))
2217, 21sselid 3940 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ ℝ*)
23 pmeasmono.3 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ 𝑅)
2423adantr 481 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝐵𝐴) ∈ 𝑅)
2518, 24ffvelcdmd 7030 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞))
26 xrge0addge 31456 . . . 4 (((𝑃𝐴) ∈ ℝ* ∧ (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
2722, 25, 26syl2anc 584 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
28 prct 31425 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ≼ ω)
2919, 23, 28syl2anc 584 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
3029adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ≼ ω)
31 prssi 4779 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3219, 23, 31syl2anc 584 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3332adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
34 disjdif 4429 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
35 simpr 485 . . . . . . . 8 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴 ≠ (𝐵𝐴))
36 id 22 . . . . . . . . 9 (𝑦 = 𝐴𝑦 = 𝐴)
37 id 22 . . . . . . . . 9 (𝑦 = (𝐵𝐴) → 𝑦 = (𝐵𝐴))
3836, 37disjprg 5099 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
3920, 24, 35, 38syl3anc 1371 . . . . . . 7 ((𝜑𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
4034, 39mpbiri 257 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
4130, 33, 403jca 1128 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
42 prex 5387 . . . . . . 7 {𝐴, (𝐵𝐴)} ∈ V
43 biidd 261 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝜑𝜑))
44 breq1 5106 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥 ≼ ω ↔ {𝐴, (𝐵𝐴)} ≼ ω))
45 sseq1 3967 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥𝑅 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑅))
46 disjeq1 5075 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
4744, 45, 463anbi123d 1436 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)))
4843, 47anbi12d 631 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))))
49 unieq 4874 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → 𝑥 = {𝐴, (𝐵𝐴)})
5049fveq2d 6841 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑃 𝑥) = (𝑃 {𝐴, (𝐵𝐴)}))
51 esumeq1 32406 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5250, 51eqeq12d 2753 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5348, 52imbi12d 344 . . . . . . . 8 (𝑥 = {𝐴, (𝐵𝐴)} → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))))
54 caraext.3 . . . . . . . 8 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
5553, 54vtoclg 3523 . . . . . . 7 ({𝐴, (𝐵𝐴)} ∈ V → ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5642, 55ax-mp 5 . . . . . 6 ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5756adantlr 713 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5841, 57mpdan 685 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
59 uniprg 4880 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
6019, 23, 59syl2anc 584 . . . . . . 7 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
61 pmeasmono.4 . . . . . . . 8 (𝜑𝐴𝐵)
62 undif 4439 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6361, 62sylib 217 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6460, 63eqtrd 2777 . . . . . 6 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
6564adantr 481 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} = 𝐵)
6665fveq2d 6841 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = (𝑃𝐵))
67 simpr 485 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
6867fveq2d 6841 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → (𝑃𝑦) = (𝑃𝐴))
69 simpr 485 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → 𝑦 = (𝐵𝐴))
7069fveq2d 6841 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → (𝑃𝑦) = (𝑃‘(𝐵𝐴)))
7168, 70, 20, 24, 21, 25, 35esumpr 32438 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7258, 66, 713eqtr3d 2785 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐵) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7327, 72breqtrrd 5131 . 2 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
7416, 73pm2.61dane 3030 1 (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2941  Vcvv 3443  cdif 3905  cun 3906  cin 3907  wss 3908  c0 4280  {cpr 4586   cuni 4863  Disj wdisj 5068   class class class wbr 5103  wf 6487  cfv 6491  (class class class)co 7349  ωcom 7792  cdom 8814  0cc0 10984  +∞cpnf 11119  *cxr 11121  cle 11123   +𝑒 cxad 12959  [,]cicc 13195  Σ*cesum 32399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-inf2 9510  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062  ax-addf 11063  ax-mulf 11064
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-disj 5069  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-se 5586  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-isom 6500  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7607  df-om 7793  df-1st 7911  df-2nd 7912  df-supp 8060  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-2o 8380  df-er 8581  df-map 8700  df-pm 8701  df-ixp 8769  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-fsupp 9239  df-fi 9280  df-sup 9311  df-inf 9312  df-oi 9379  df-dju 9770  df-card 9808  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-4 12151  df-5 12152  df-6 12153  df-7 12154  df-8 12155  df-9 12156  df-n0 12347  df-z 12433  df-dec 12551  df-uz 12696  df-q 12802  df-rp 12844  df-xneg 12961  df-xadd 12962  df-xmul 12963  df-ioo 13196  df-ioc 13197  df-ico 13198  df-icc 13199  df-fz 13353  df-fzo 13496  df-fl 13625  df-mod 13703  df-seq 13835  df-exp 13896  df-fac 14101  df-bc 14130  df-hash 14158  df-shft 14885  df-cj 14917  df-re 14918  df-im 14919  df-sqrt 15053  df-abs 15054  df-limsup 15287  df-clim 15304  df-rlim 15305  df-sum 15505  df-ef 15884  df-sin 15886  df-cos 15887  df-pi 15889  df-struct 16953  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-ress 17047  df-plusg 17080  df-mulr 17081  df-starv 17082  df-sca 17083  df-vsca 17084  df-ip 17085  df-tset 17086  df-ple 17087  df-ds 17089  df-unif 17090  df-hom 17091  df-cco 17092  df-rest 17238  df-topn 17239  df-0g 17257  df-gsum 17258  df-topgen 17259  df-pt 17260  df-prds 17263  df-ordt 17317  df-xrs 17318  df-qtop 17323  df-imas 17324  df-xps 17326  df-mre 17400  df-mrc 17401  df-acs 17403  df-ps 18389  df-tsr 18390  df-plusf 18430  df-mgm 18431  df-sgrp 18480  df-mnd 18491  df-mhm 18535  df-submnd 18536  df-grp 18685  df-minusg 18686  df-sbg 18687  df-mulg 18806  df-subg 18857  df-cntz 19029  df-cmn 19493  df-abl 19494  df-mgp 19826  df-ur 19843  df-ring 19890  df-cring 19891  df-subrg 20143  df-abv 20199  df-lmod 20247  df-scaf 20248  df-sra 20556  df-rgmod 20557  df-psmet 20711  df-xmet 20712  df-met 20713  df-bl 20714  df-mopn 20715  df-fbas 20716  df-fg 20717  df-cnfld 20720  df-top 22165  df-topon 22182  df-topsp 22204  df-bases 22218  df-cld 22292  df-ntr 22293  df-cls 22294  df-nei 22371  df-lp 22409  df-perf 22410  df-cn 22500  df-cnp 22501  df-haus 22588  df-tx 22835  df-hmeo 23028  df-fil 23119  df-fm 23211  df-flim 23212  df-flf 23213  df-tmd 23345  df-tgp 23346  df-tsms 23400  df-trg 23433  df-xms 23595  df-ms 23596  df-tms 23597  df-nm 23860  df-ngp 23861  df-nrg 23863  df-nlm 23864  df-ii 24162  df-cncf 24163  df-limc 25152  df-dv 25153  df-log 25834  df-esum 32400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator