Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasmono Structured version   Visualization version   GIF version

Theorem pmeasmono 31481
Description: This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeasmono.1 (𝜑𝐴𝑅)
pmeasmono.2 (𝜑𝐵𝑅)
pmeasmono.3 (𝜑 → (𝐵𝐴) ∈ 𝑅)
pmeasmono.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
pmeasmono (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem pmeasmono
StepHypRef Expression
1 eqimss 4020 . . . . . . 7 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
2 ssdifeq0 4428 . . . . . . 7 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
31, 2sylib 219 . . . . . 6 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
43fveq2d 6667 . . . . 5 (𝐴 = (𝐵𝐴) → (𝑃𝐴) = (𝑃‘∅))
54adantl 482 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = (𝑃‘∅))
6 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
76adantr 481 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃‘∅) = 0)
85, 7eqtrd 2853 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = 0)
9 caraext.1 . . . . . 6 (𝜑𝑃:𝑅⟶(0[,]+∞))
10 pmeasmono.2 . . . . . 6 (𝜑𝐵𝑅)
119, 10ffvelrnd 6844 . . . . 5 (𝜑 → (𝑃𝐵) ∈ (0[,]+∞))
12 elxrge0 12833 . . . . . 6 ((𝑃𝐵) ∈ (0[,]+∞) ↔ ((𝑃𝐵) ∈ ℝ* ∧ 0 ≤ (𝑃𝐵)))
1312simprbi 497 . . . . 5 ((𝑃𝐵) ∈ (0[,]+∞) → 0 ≤ (𝑃𝐵))
1411, 13syl 17 . . . 4 (𝜑 → 0 ≤ (𝑃𝐵))
1514adantr 481 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → 0 ≤ (𝑃𝐵))
168, 15eqbrtrd 5079 . 2 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
17 iccssxr 12807 . . . . 5 (0[,]+∞) ⊆ ℝ*
189adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝑃:𝑅⟶(0[,]+∞))
19 pmeasmono.1 . . . . . . 7 (𝜑𝐴𝑅)
2019adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴𝑅)
2118, 20ffvelrnd 6844 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ (0[,]+∞))
2217, 21sseldi 3962 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ ℝ*)
23 pmeasmono.3 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ 𝑅)
2423adantr 481 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝐵𝐴) ∈ 𝑅)
2518, 24ffvelrnd 6844 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞))
26 xrge0addge 30407 . . . 4 (((𝑃𝐴) ∈ ℝ* ∧ (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
2722, 25, 26syl2anc 584 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
28 prct 30376 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ≼ ω)
2919, 23, 28syl2anc 584 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
3029adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ≼ ω)
31 prssi 4746 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3219, 23, 31syl2anc 584 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3332adantr 481 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
34 disjdif 4417 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
35 simpr 485 . . . . . . . 8 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴 ≠ (𝐵𝐴))
36 id 22 . . . . . . . . 9 (𝑦 = 𝐴𝑦 = 𝐴)
37 id 22 . . . . . . . . 9 (𝑦 = (𝐵𝐴) → 𝑦 = (𝐵𝐴))
3836, 37disjprg 5053 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
3920, 24, 35, 38syl3anc 1363 . . . . . . 7 ((𝜑𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
4034, 39mpbiri 259 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
4130, 33, 403jca 1120 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
42 prex 5323 . . . . . . 7 {𝐴, (𝐵𝐴)} ∈ V
43 biidd 263 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝜑𝜑))
44 breq1 5060 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥 ≼ ω ↔ {𝐴, (𝐵𝐴)} ≼ ω))
45 sseq1 3989 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥𝑅 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑅))
46 disjeq1 5029 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
4744, 45, 463anbi123d 1427 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)))
4843, 47anbi12d 630 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))))
49 unieq 4838 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → 𝑥 = {𝐴, (𝐵𝐴)})
5049fveq2d 6667 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑃 𝑥) = (𝑃 {𝐴, (𝐵𝐴)}))
51 esumeq1 31192 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5250, 51eqeq12d 2834 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5348, 52imbi12d 346 . . . . . . . 8 (𝑥 = {𝐴, (𝐵𝐴)} → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))))
54 caraext.3 . . . . . . . 8 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
5553, 54vtoclg 3565 . . . . . . 7 ({𝐴, (𝐵𝐴)} ∈ V → ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5642, 55ax-mp 5 . . . . . 6 ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5756adantlr 711 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5841, 57mpdan 683 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
59 uniprg 4844 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
6019, 23, 59syl2anc 584 . . . . . . 7 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
61 pmeasmono.4 . . . . . . . 8 (𝜑𝐴𝐵)
62 undif 4426 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6361, 62sylib 219 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6460, 63eqtrd 2853 . . . . . 6 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
6564adantr 481 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} = 𝐵)
6665fveq2d 6667 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = (𝑃𝐵))
67 simpr 485 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
6867fveq2d 6667 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → (𝑃𝑦) = (𝑃𝐴))
69 simpr 485 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → 𝑦 = (𝐵𝐴))
7069fveq2d 6667 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → (𝑃𝑦) = (𝑃‘(𝐵𝐴)))
7168, 70, 20, 24, 21, 25, 35esumpr 31224 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7258, 66, 713eqtr3d 2861 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐵) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7327, 72breqtrrd 5085 . 2 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
7416, 73pm2.61dane 3101 1 (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4288  {cpr 4559   cuni 4830  Disj wdisj 5022   class class class wbr 5057  wf 6344  cfv 6348  (class class class)co 7145  ωcom 7569  cdom 8495  0cc0 10525  +∞cpnf 10660  *cxr 10662  cle 10664   +𝑒 cxad 12493  [,]cicc 12729  Σ*cesum 31185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-ordt 16762  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-ps 17798  df-tsr 17799  df-plusf 17839  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-subrg 19462  df-abv 19517  df-lmod 19565  df-scaf 19566  df-sra 19873  df-rgmod 19874  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-tmd 22608  df-tgp 22609  df-tsms 22662  df-trg 22695  df-xms 22857  df-ms 22858  df-tms 22859  df-nm 23119  df-ngp 23120  df-nrg 23122  df-nlm 23123  df-ii 23412  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067  df-esum 31186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator