Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmeasmono Structured version   Visualization version   GIF version

Theorem pmeasmono 34327
Description: This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
caraext.1 (𝜑𝑃:𝑅⟶(0[,]+∞))
caraext.2 (𝜑 → (𝑃‘∅) = 0)
caraext.3 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
pmeasmono.1 (𝜑𝐴𝑅)
pmeasmono.2 (𝜑𝐵𝑅)
pmeasmono.3 (𝜑 → (𝐵𝐴) ∈ 𝑅)
pmeasmono.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
pmeasmono (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Distinct variable groups:   𝑥,𝑃,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem pmeasmono
StepHypRef Expression
1 eqimss 3991 . . . . . . 7 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
2 ssdifeq0 4435 . . . . . . 7 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
31, 2sylib 218 . . . . . 6 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
43fveq2d 6821 . . . . 5 (𝐴 = (𝐵𝐴) → (𝑃𝐴) = (𝑃‘∅))
54adantl 481 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = (𝑃‘∅))
6 caraext.2 . . . . 5 (𝜑 → (𝑃‘∅) = 0)
76adantr 480 . . . 4 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃‘∅) = 0)
85, 7eqtrd 2765 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) = 0)
9 caraext.1 . . . . . 6 (𝜑𝑃:𝑅⟶(0[,]+∞))
10 pmeasmono.2 . . . . . 6 (𝜑𝐵𝑅)
119, 10ffvelcdmd 7013 . . . . 5 (𝜑 → (𝑃𝐵) ∈ (0[,]+∞))
12 elxrge0 13349 . . . . . 6 ((𝑃𝐵) ∈ (0[,]+∞) ↔ ((𝑃𝐵) ∈ ℝ* ∧ 0 ≤ (𝑃𝐵)))
1312simprbi 496 . . . . 5 ((𝑃𝐵) ∈ (0[,]+∞) → 0 ≤ (𝑃𝐵))
1411, 13syl 17 . . . 4 (𝜑 → 0 ≤ (𝑃𝐵))
1514adantr 480 . . 3 ((𝜑𝐴 = (𝐵𝐴)) → 0 ≤ (𝑃𝐵))
168, 15eqbrtrd 5111 . 2 ((𝜑𝐴 = (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
17 iccssxr 13322 . . . . 5 (0[,]+∞) ⊆ ℝ*
189adantr 480 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝑃:𝑅⟶(0[,]+∞))
19 pmeasmono.1 . . . . . . 7 (𝜑𝐴𝑅)
2019adantr 480 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴𝑅)
2118, 20ffvelcdmd 7013 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ (0[,]+∞))
2217, 21sselid 3930 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ∈ ℝ*)
23 pmeasmono.3 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ 𝑅)
2423adantr 480 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝐵𝐴) ∈ 𝑅)
2518, 24ffvelcdmd 7013 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞))
26 xrge0addge 32731 . . . 4 (((𝑃𝐴) ∈ ℝ* ∧ (𝑃‘(𝐵𝐴)) ∈ (0[,]+∞)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
2722, 25, 26syl2anc 584 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
28 prct 32686 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ≼ ω)
2919, 23, 28syl2anc 584 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
3029adantr 480 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ≼ ω)
31 prssi 4771 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3219, 23, 31syl2anc 584 . . . . . . 7 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
3332adantr 480 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} ⊆ 𝑅)
34 disjdif 4420 . . . . . . 7 (𝐴 ∩ (𝐵𝐴)) = ∅
35 simpr 484 . . . . . . . 8 ((𝜑𝐴 ≠ (𝐵𝐴)) → 𝐴 ≠ (𝐵𝐴))
36 id 22 . . . . . . . . 9 (𝑦 = 𝐴𝑦 = 𝐴)
37 id 22 . . . . . . . . 9 (𝑦 = (𝐵𝐴) → 𝑦 = (𝐵𝐴))
3836, 37disjprg 5085 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
3920, 24, 35, 38syl3anc 1373 . . . . . . 7 ((𝜑𝐴 ≠ (𝐵𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵𝐴)) = ∅))
4034, 39mpbiri 258 . . . . . 6 ((𝜑𝐴 ≠ (𝐵𝐴)) → Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
4130, 33, 403jca 1128 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
42 prex 5373 . . . . . . 7 {𝐴, (𝐵𝐴)} ∈ V
43 biidd 262 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝜑𝜑))
44 breq1 5092 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥 ≼ ω ↔ {𝐴, (𝐵𝐴)} ≼ ω))
45 sseq1 3958 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑥𝑅 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑅))
46 disjeq1 5063 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
4744, 45, 463anbi123d 1438 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦) ↔ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)))
4843, 47anbi12d 632 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) ↔ (𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))))
49 unieq 4868 . . . . . . . . . . 11 (𝑥 = {𝐴, (𝐵𝐴)} → 𝑥 = {𝐴, (𝐵𝐴)})
5049fveq2d 6821 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → (𝑃 𝑥) = (𝑃 {𝐴, (𝐵𝐴)}))
51 esumeq1 34037 . . . . . . . . . 10 (𝑥 = {𝐴, (𝐵𝐴)} → Σ*𝑦𝑥(𝑃𝑦) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5250, 51eqeq12d 2746 . . . . . . . . 9 (𝑥 = {𝐴, (𝐵𝐴)} → ((𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦) ↔ (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5348, 52imbi12d 344 . . . . . . . 8 (𝑥 = {𝐴, (𝐵𝐴)} → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦)) ↔ ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))))
54 caraext.3 . . . . . . . 8 ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))
5553, 54vtoclg 3507 . . . . . . 7 ({𝐴, (𝐵𝐴)} ∈ V → ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦)))
5642, 55ax-mp 5 . . . . . 6 ((𝜑 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5756adantlr 715 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ {𝐴, (𝐵𝐴)} ⊆ 𝑅Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
5841, 57mpdan 687 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦))
59 uniprg 4873 . . . . . . . 8 ((𝐴𝑅 ∧ (𝐵𝐴) ∈ 𝑅) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
6019, 23, 59syl2anc 584 . . . . . . 7 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
61 pmeasmono.4 . . . . . . . 8 (𝜑𝐴𝐵)
62 undif 4430 . . . . . . . 8 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6361, 62sylib 218 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6460, 63eqtrd 2765 . . . . . 6 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
6564adantr 480 . . . . 5 ((𝜑𝐴 ≠ (𝐵𝐴)) → {𝐴, (𝐵𝐴)} = 𝐵)
6665fveq2d 6821 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃 {𝐴, (𝐵𝐴)}) = (𝑃𝐵))
67 simpr 484 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴)
6867fveq2d 6821 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = 𝐴) → (𝑃𝑦) = (𝑃𝐴))
69 simpr 484 . . . . . 6 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → 𝑦 = (𝐵𝐴))
7069fveq2d 6821 . . . . 5 (((𝜑𝐴 ≠ (𝐵𝐴)) ∧ 𝑦 = (𝐵𝐴)) → (𝑃𝑦) = (𝑃‘(𝐵𝐴)))
7168, 70, 20, 24, 21, 25, 35esumpr 34069 . . . 4 ((𝜑𝐴 ≠ (𝐵𝐴)) → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑃𝑦) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7258, 66, 713eqtr3d 2773 . . 3 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐵) = ((𝑃𝐴) +𝑒 (𝑃‘(𝐵𝐴))))
7327, 72breqtrrd 5117 . 2 ((𝜑𝐴 ≠ (𝐵𝐴)) → (𝑃𝐴) ≤ (𝑃𝐵))
7416, 73pm2.61dane 3013 1 (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  Vcvv 3434  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281  {cpr 4576   cuni 4857  Disj wdisj 5056   class class class wbr 5089  wf 6473  cfv 6477  (class class class)co 7341  ωcom 7791  cdom 8862  0cc0 10998  +∞cpnf 11135  *cxr 11137  cle 11139   +𝑒 cxad 13001  [,]cicc 13240  Σ*cesum 34030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-ordt 17397  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-ps 18464  df-tsr 18465  df-plusf 18539  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-subrng 20454  df-subrg 20478  df-abv 20717  df-lmod 20788  df-scaf 20789  df-sra 21100  df-rgmod 21101  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-tmd 23980  df-tgp 23981  df-tsms 24035  df-trg 24068  df-xms 24228  df-ms 24229  df-tms 24230  df-nm 24490  df-ngp 24491  df-nrg 24493  df-nlm 24494  df-ii 24790  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-esum 34031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator