Proof of Theorem pmeasmono
Step | Hyp | Ref
| Expression |
1 | | eqimss 3973 |
. . . . . . 7
⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 ⊆ (𝐵 ∖ 𝐴)) |
2 | | ssdifeq0 4414 |
. . . . . . 7
⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) |
3 | 1, 2 | sylib 217 |
. . . . . 6
⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
4 | 3 | fveq2d 6760 |
. . . . 5
⊢ (𝐴 = (𝐵 ∖ 𝐴) → (𝑃‘𝐴) = (𝑃‘∅)) |
5 | 4 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑃‘𝐴) = (𝑃‘∅)) |
6 | | caraext.2 |
. . . . 5
⊢ (𝜑 → (𝑃‘∅) = 0) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑃‘∅) = 0) |
8 | 5, 7 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑃‘𝐴) = 0) |
9 | | caraext.1 |
. . . . . 6
⊢ (𝜑 → 𝑃:𝑅⟶(0[,]+∞)) |
10 | | pmeasmono.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑅) |
11 | 9, 10 | ffvelrnd 6944 |
. . . . 5
⊢ (𝜑 → (𝑃‘𝐵) ∈ (0[,]+∞)) |
12 | | elxrge0 13118 |
. . . . . 6
⊢ ((𝑃‘𝐵) ∈ (0[,]+∞) ↔ ((𝑃‘𝐵) ∈ ℝ* ∧ 0 ≤
(𝑃‘𝐵))) |
13 | 12 | simprbi 496 |
. . . . 5
⊢ ((𝑃‘𝐵) ∈ (0[,]+∞) → 0 ≤ (𝑃‘𝐵)) |
14 | 11, 13 | syl 17 |
. . . 4
⊢ (𝜑 → 0 ≤ (𝑃‘𝐵)) |
15 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → 0 ≤ (𝑃‘𝐵)) |
16 | 8, 15 | eqbrtrd 5092 |
. 2
⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑃‘𝐴) ≤ (𝑃‘𝐵)) |
17 | | iccssxr 13091 |
. . . . 5
⊢
(0[,]+∞) ⊆ ℝ* |
18 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → 𝑃:𝑅⟶(0[,]+∞)) |
19 | | pmeasmono.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑅) |
20 | 19 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → 𝐴 ∈ 𝑅) |
21 | 18, 20 | ffvelrnd 6944 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘𝐴) ∈ (0[,]+∞)) |
22 | 17, 21 | sselid 3915 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘𝐴) ∈
ℝ*) |
23 | | pmeasmono.3 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑅) |
24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝐵 ∖ 𝐴) ∈ 𝑅) |
25 | 18, 24 | ffvelrnd 6944 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
26 | | xrge0addge 30982 |
. . . 4
⊢ (((𝑃‘𝐴) ∈ ℝ* ∧ (𝑃‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) → (𝑃‘𝐴) ≤ ((𝑃‘𝐴) +𝑒 (𝑃‘(𝐵 ∖ 𝐴)))) |
27 | 22, 25, 26 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘𝐴) ≤ ((𝑃‘𝐴) +𝑒 (𝑃‘(𝐵 ∖ 𝐴)))) |
28 | | prct 30951 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑅 ∧ (𝐵 ∖ 𝐴) ∈ 𝑅) → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) |
29 | 19, 23, 28 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) |
30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) |
31 | | prssi 4751 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑅 ∧ (𝐵 ∖ 𝐴) ∈ 𝑅) → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅) |
32 | 19, 23, 31 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅) |
33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅) |
34 | | disjdif 4402 |
. . . . . . 7
⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ |
35 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → 𝐴 ≠ (𝐵 ∖ 𝐴)) |
36 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) |
37 | | id 22 |
. . . . . . . . 9
⊢ (𝑦 = (𝐵 ∖ 𝐴) → 𝑦 = (𝐵 ∖ 𝐴)) |
38 | 36, 37 | disjprg 5066 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑅 ∧ (𝐵 ∖ 𝐴) ∈ 𝑅 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅)) |
39 | 20, 24, 35, 38 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦 ↔ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅)) |
40 | 34, 39 | mpbiri 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦) |
41 | 30, 33, 40 | 3jca 1126 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅 ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) |
42 | | prex 5350 |
. . . . . . 7
⊢ {𝐴, (𝐵 ∖ 𝐴)} ∈ V |
43 | | biidd 261 |
. . . . . . . . . 10
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → (𝜑 ↔ 𝜑)) |
44 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → (𝑥 ≼ ω ↔ {𝐴, (𝐵 ∖ 𝐴)} ≼ ω)) |
45 | | sseq1 3942 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → (𝑥 ⊆ 𝑅 ↔ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅)) |
46 | | disjeq1 5042 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) |
47 | 44, 45, 46 | 3anbi123d 1434 |
. . . . . . . . . 10
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → ((𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅 ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦))) |
48 | 43, 47 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ↔ (𝜑 ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅 ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)))) |
49 | | unieq 4847 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → ∪ 𝑥 = ∪
{𝐴, (𝐵 ∖ 𝐴)}) |
50 | 49 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → (𝑃‘∪ 𝑥) = (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)})) |
51 | | esumeq1 31902 |
. . . . . . . . . 10
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦)) |
52 | 50, 51 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → ((𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦) ↔ (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦))) |
53 | 48, 52 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = {𝐴, (𝐵 ∖ 𝐴)} → (((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) ↔ ((𝜑 ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅 ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) → (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦)))) |
54 | | caraext.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥 ⊆ 𝑅 ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑃‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑃‘𝑦)) |
55 | 53, 54 | vtoclg 3495 |
. . . . . . 7
⊢ ({𝐴, (𝐵 ∖ 𝐴)} ∈ V → ((𝜑 ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅 ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) → (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦))) |
56 | 42, 55 | ax-mp 5 |
. . . . . 6
⊢ ((𝜑 ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅 ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) → (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦)) |
57 | 56 | adantlr 711 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑅 ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) → (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦)) |
58 | 41, 57 | mpdan 683 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦)) |
59 | | uniprg 4853 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑅 ∧ (𝐵 ∖ 𝐴) ∈ 𝑅) → ∪ {𝐴, (𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
60 | 19, 23, 59 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → ∪ {𝐴,
(𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
61 | | pmeasmono.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
62 | | undif 4412 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
63 | 61, 62 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
64 | 60, 63 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ∪ {𝐴,
(𝐵 ∖ 𝐴)} = 𝐵) |
65 | 64 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → ∪
{𝐴, (𝐵 ∖ 𝐴)} = 𝐵) |
66 | 65 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = (𝑃‘𝐵)) |
67 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) |
68 | 67 | fveq2d 6760 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) ∧ 𝑦 = 𝐴) → (𝑃‘𝑦) = (𝑃‘𝐴)) |
69 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) ∧ 𝑦 = (𝐵 ∖ 𝐴)) → 𝑦 = (𝐵 ∖ 𝐴)) |
70 | 69 | fveq2d 6760 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) ∧ 𝑦 = (𝐵 ∖ 𝐴)) → (𝑃‘𝑦) = (𝑃‘(𝐵 ∖ 𝐴))) |
71 | 68, 70, 20, 24, 21, 25, 35 | esumpr 31934 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑃‘𝑦) = ((𝑃‘𝐴) +𝑒 (𝑃‘(𝐵 ∖ 𝐴)))) |
72 | 58, 66, 71 | 3eqtr3d 2786 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘𝐵) = ((𝑃‘𝐴) +𝑒 (𝑃‘(𝐵 ∖ 𝐴)))) |
73 | 27, 72 | breqtrrd 5098 |
. 2
⊢ ((𝜑 ∧ 𝐴 ≠ (𝐵 ∖ 𝐴)) → (𝑃‘𝐴) ≤ (𝑃‘𝐵)) |
74 | 16, 73 | pm2.61dane 3031 |
1
⊢ (𝜑 → (𝑃‘𝐴) ≤ (𝑃‘𝐵)) |