Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepdisj Structured version   Visualization version   GIF version

Theorem sepdisj 48721
Description: Separated sets are disjoint. Note that in general separatedness also requires 𝑇 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (𝜑𝐽 ∈ Top)
sepdisj.2 (𝜑𝑆 𝐽)
sepdisj.3 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
Assertion
Ref Expression
sepdisj (𝜑 → (𝑆𝑇) = ∅)

Proof of Theorem sepdisj
StepHypRef Expression
1 sepdisj.1 . . 3 (𝜑𝐽 ∈ Top)
2 sepdisj.2 . . 3 (𝜑𝑆 𝐽)
3 eqid 2735 . . . 4 𝐽 = 𝐽
43sscls 23080 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
51, 2, 4syl2anc 584 . 2 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
6 sepdisj.3 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
75, 6ssdisjd 48656 1 (𝜑 → (𝑆𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cin 3962  wss 3963  c0 4339   cuni 4912  cfv 6563  Topctop 22915  clsccl 23042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-top 22916  df-cld 23043  df-cls 23045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator