Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepdisj Structured version   Visualization version   GIF version

Theorem sepdisj 48604
Description: Separated sets are disjoint. Note that in general separatedness also requires 𝑇 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (𝜑𝐽 ∈ Top)
sepdisj.2 (𝜑𝑆 𝐽)
sepdisj.3 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
Assertion
Ref Expression
sepdisj (𝜑 → (𝑆𝑇) = ∅)

Proof of Theorem sepdisj
StepHypRef Expression
1 sepdisj.1 . . 3 (𝜑𝐽 ∈ Top)
2 sepdisj.2 . . 3 (𝜑𝑆 𝐽)
3 eqid 2740 . . . 4 𝐽 = 𝐽
43sscls 23085 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
51, 2, 4syl2anc 583 . 2 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
6 sepdisj.3 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
75, 6ssdisjd 48539 1 (𝜑 → (𝑆𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  wss 3976  c0 4352   cuni 4931  cfv 6573  Topctop 22920  clsccl 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-cls 23050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator