Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sepdisj Structured version   Visualization version   GIF version

Theorem sepdisj 49039
Description: Separated sets are disjoint. Note that in general separatedness also requires 𝑇 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.)
Hypotheses
Ref Expression
sepdisj.1 (𝜑𝐽 ∈ Top)
sepdisj.2 (𝜑𝑆 𝐽)
sepdisj.3 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
Assertion
Ref Expression
sepdisj (𝜑 → (𝑆𝑇) = ∅)

Proof of Theorem sepdisj
StepHypRef Expression
1 sepdisj.1 . . 3 (𝜑𝐽 ∈ Top)
2 sepdisj.2 . . 3 (𝜑𝑆 𝐽)
3 eqid 2733 . . . 4 𝐽 = 𝐽
43sscls 22981 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
51, 2, 4syl2anc 584 . 2 (𝜑𝑆 ⊆ ((cls‘𝐽)‘𝑆))
6 sepdisj.3 . 2 (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
75, 6ssdisjd 48922 1 (𝜑 → (𝑆𝑇) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cin 3898  wss 3899  c0 4284   cuni 4860  cfv 6489  Topctop 22818  clsccl 22943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-top 22819  df-cld 22944  df-cls 22946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator