![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sepdisj | Structured version Visualization version GIF version |
Description: Separated sets are disjoint. Note that in general separatedness also requires 𝑇 ⊆ ∪ 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.) |
Ref | Expression |
---|---|
sepdisj.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
sepdisj.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
sepdisj.3 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
Ref | Expression |
---|---|
sepdisj | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sepdisj.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | sepdisj.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
3 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | sscls 23085 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
5 | 1, 2, 4 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
6 | sepdisj.3 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) | |
7 | 5, 6 | ssdisjd 48539 | 1 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 clsccl 23047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-cld 23048 df-cls 23050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |