| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sepdisj | Structured version Visualization version GIF version | ||
| Description: Separated sets are disjoint. Note that in general separatedness also requires 𝑇 ⊆ ∪ 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| sepdisj.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| sepdisj.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| sepdisj.3 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| Ref | Expression |
|---|---|
| sepdisj | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sepdisj.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | sepdisj.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2733 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | sscls 22981 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| 5 | 1, 2, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| 6 | sepdisj.3 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) | |
| 7 | 5, 6 | ssdisjd 48922 | 1 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3898 ⊆ wss 3899 ∅c0 4284 ∪ cuni 4860 ‘cfv 6489 Topctop 22818 clsccl 22943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-top 22819 df-cld 22944 df-cls 22946 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |