| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sepdisj | Structured version Visualization version GIF version | ||
| Description: Separated sets are disjoint. Note that in general separatedness also requires 𝑇 ⊆ ∪ 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.) |
| Ref | Expression |
|---|---|
| sepdisj.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| sepdisj.2 | ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) |
| sepdisj.3 | ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) |
| Ref | Expression |
|---|---|
| sepdisj | ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sepdisj.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 2 | sepdisj.2 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐽) | |
| 3 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | sscls 22950 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| 5 | 1, 2, 4 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
| 6 | sepdisj.3 | . 2 ⊢ (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) | |
| 7 | 5, 6 | ssdisjd 48800 | 1 ⊢ (𝜑 → (𝑆 ∩ 𝑇) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 clsccl 22912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-top 22788 df-cld 22913 df-cls 22915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |