| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssrin 4191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 |
| This theorem is referenced by: fictb 10142 isacs1i 17565 rescabs 17742 lsmdisj 19595 dmdprdsplit2lem 19961 rhmsscrnghm 20582 rngcresringcat 20586 acsfn1p 20716 obselocv 21667 restbas 23074 neitr 23096 restcls 23097 restntr 23098 nrmsep 23273 cldllycmp 23411 fclsneii 23933 tsmsres 24060 trcfilu 24209 metdseq0 24771 iundisj2 25478 uniioombllem3 25514 ppisval 27042 ppisval2 27043 chtwordi 27094 ppiwordi 27100 chpub 27159 chebbnd1lem1 27408 mdbr2 32278 mdslj1i 32301 mdsl2i 32304 mdslmd1lem1 32307 mdslmd3i 32314 mdexchi 32317 sumdmdlem 32400 iundisj2f 32572 iundisj2fi 32784 cycpmco2f1 33100 tocyccntz 33120 esumrnmpt2 34102 bnj1177 35039 sstotbnd2 37835 lcvexchlem5 39158 pnonsingN 40053 dochnoncon 41511 eldioph2lem2 42879 limsupres 45828 limsupresxr 45889 liminfresxr 45890 liminflelimsuplem 45898 ssdisjd 48933 |
| Copyright terms: Public domain | W3C validator |