| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssrin 4195 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3904 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 |
| This theorem is referenced by: fictb 10157 isacs1i 17581 rescabs 17758 lsmdisj 19578 dmdprdsplit2lem 19944 rhmsscrnghm 20568 rngcresringcat 20572 acsfn1p 20702 obselocv 21653 restbas 23061 neitr 23083 restcls 23084 restntr 23085 nrmsep 23260 cldllycmp 23398 fclsneii 23920 tsmsres 24047 trcfilu 24197 metdseq0 24759 iundisj2 25466 uniioombllem3 25502 ppisval 27030 ppisval2 27031 chtwordi 27082 ppiwordi 27088 chpub 27147 chebbnd1lem1 27396 mdbr2 32258 mdslj1i 32281 mdsl2i 32284 mdslmd1lem1 32287 mdslmd3i 32294 mdexchi 32297 sumdmdlem 32380 iundisj2f 32552 iundisj2fi 32753 cycpmco2f1 33079 tocyccntz 33099 esumrnmpt2 34034 bnj1177 34972 sstotbnd2 37753 lcvexchlem5 39016 pnonsingN 39912 dochnoncon 41370 eldioph2lem2 42734 limsupres 45687 limsupresxr 45748 liminfresxr 45749 liminflelimsuplem 45757 ssdisjd 48793 |
| Copyright terms: Public domain | W3C validator |