| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssrin 4217 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: fictb 10258 isacs1i 17669 rescabs 17846 lsmdisj 19662 dmdprdsplit2lem 20028 rhmsscrnghm 20625 rngcresringcat 20629 acsfn1p 20759 obselocv 21688 restbas 23096 neitr 23118 restcls 23119 restntr 23120 nrmsep 23295 cldllycmp 23433 fclsneii 23955 tsmsres 24082 trcfilu 24232 metdseq0 24794 iundisj2 25502 uniioombllem3 25538 ppisval 27066 ppisval2 27067 chtwordi 27118 ppiwordi 27124 chpub 27183 chebbnd1lem1 27432 mdbr2 32277 mdslj1i 32300 mdsl2i 32303 mdslmd1lem1 32306 mdslmd3i 32313 mdexchi 32316 sumdmdlem 32399 iundisj2f 32571 iundisj2fi 32774 cycpmco2f1 33135 tocyccntz 33155 esumrnmpt2 34099 bnj1177 35037 sstotbnd2 37798 lcvexchlem5 39056 pnonsingN 39952 dochnoncon 41410 eldioph2lem2 42784 limsupres 45734 limsupresxr 45795 liminfresxr 45796 liminflelimsuplem 45804 ssdisjd 48786 |
| Copyright terms: Public domain | W3C validator |