| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssrin 4205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: fictb 10197 isacs1i 17618 rescabs 17795 lsmdisj 19611 dmdprdsplit2lem 19977 rhmsscrnghm 20574 rngcresringcat 20578 acsfn1p 20708 obselocv 21637 restbas 23045 neitr 23067 restcls 23068 restntr 23069 nrmsep 23244 cldllycmp 23382 fclsneii 23904 tsmsres 24031 trcfilu 24181 metdseq0 24743 iundisj2 25450 uniioombllem3 25486 ppisval 27014 ppisval2 27015 chtwordi 27066 ppiwordi 27072 chpub 27131 chebbnd1lem1 27380 mdbr2 32225 mdslj1i 32248 mdsl2i 32251 mdslmd1lem1 32254 mdslmd3i 32261 mdexchi 32264 sumdmdlem 32347 iundisj2f 32519 iundisj2fi 32720 cycpmco2f1 33081 tocyccntz 33101 esumrnmpt2 34058 bnj1177 34996 sstotbnd2 37768 lcvexchlem5 39031 pnonsingN 39927 dochnoncon 41385 eldioph2lem2 42749 limsupres 45703 limsupresxr 45764 liminfresxr 45765 liminflelimsuplem 45773 ssdisjd 48796 |
| Copyright terms: Public domain | W3C validator |