![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssrin 4263 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: fictb 10313 isacs1i 17715 rescabs 17896 rescabsOLD 17897 lsmdisj 19723 dmdprdsplit2lem 20089 rhmsscrnghm 20687 rngcresringcat 20691 acsfn1p 20822 obselocv 21771 restbas 23187 neitr 23209 restcls 23210 restntr 23211 nrmsep 23386 cldllycmp 23524 fclsneii 24046 tsmsres 24173 trcfilu 24324 metdseq0 24895 iundisj2 25603 uniioombllem3 25639 ppisval 27165 ppisval2 27166 chtwordi 27217 ppiwordi 27223 chpub 27282 chebbnd1lem1 27531 mdbr2 32328 mdslj1i 32351 mdsl2i 32354 mdslmd1lem1 32357 mdslmd3i 32364 mdexchi 32367 sumdmdlem 32450 iundisj2f 32612 iundisj2fi 32802 cycpmco2f1 33117 tocyccntz 33137 esumrnmpt2 34032 bnj1177 34982 sstotbnd2 37734 lcvexchlem5 38994 pnonsingN 39890 dochnoncon 41348 eldioph2lem2 42717 limsupres 45626 limsupresxr 45687 liminfresxr 45688 liminflelimsuplem 45696 ssdisjd 48539 |
Copyright terms: Public domain | W3C validator |