Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssrin 4164 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: fictb 9932 isacs1i 17283 rescabs 17464 lsmdisj 19202 dmdprdsplit2lem 19563 acsfn1p 19982 obselocv 20845 restbas 22217 neitr 22239 restcls 22240 restntr 22241 nrmsep 22416 cldllycmp 22554 fclsneii 23076 tsmsres 23203 trcfilu 23354 metdseq0 23923 iundisj2 24618 uniioombllem3 24654 ppisval 26158 ppisval2 26159 chtwordi 26210 ppiwordi 26216 chpub 26273 chebbnd1lem1 26522 mdbr2 30559 mdslj1i 30582 mdsl2i 30585 mdslmd1lem1 30588 mdslmd3i 30595 mdexchi 30598 sumdmdlem 30681 iundisj2f 30830 iundisj2fi 31020 cycpmco2f1 31293 tocyccntz 31313 esumrnmpt2 31936 bnj1177 32886 sstotbnd2 35859 lcvexchlem5 36979 pnonsingN 37874 dochnoncon 39332 eldioph2lem2 40499 limsupres 43136 limsupresxr 43197 liminfresxr 43198 liminflelimsuplem 43206 rhmsscrnghm 45472 rngcresringcat 45476 ssdisjd 46041 |
Copyright terms: Public domain | W3C validator |