| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssrin 4208 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: fictb 10204 isacs1i 17625 rescabs 17802 lsmdisj 19618 dmdprdsplit2lem 19984 rhmsscrnghm 20581 rngcresringcat 20585 acsfn1p 20715 obselocv 21644 restbas 23052 neitr 23074 restcls 23075 restntr 23076 nrmsep 23251 cldllycmp 23389 fclsneii 23911 tsmsres 24038 trcfilu 24188 metdseq0 24750 iundisj2 25457 uniioombllem3 25493 ppisval 27021 ppisval2 27022 chtwordi 27073 ppiwordi 27079 chpub 27138 chebbnd1lem1 27387 mdbr2 32232 mdslj1i 32255 mdsl2i 32258 mdslmd1lem1 32261 mdslmd3i 32268 mdexchi 32271 sumdmdlem 32354 iundisj2f 32526 iundisj2fi 32727 cycpmco2f1 33088 tocyccntz 33108 esumrnmpt2 34065 bnj1177 35003 sstotbnd2 37775 lcvexchlem5 39038 pnonsingN 39934 dochnoncon 41392 eldioph2lem2 42756 limsupres 45710 limsupresxr 45771 liminfresxr 45772 liminflelimsuplem 45780 ssdisjd 48800 |
| Copyright terms: Public domain | W3C validator |