| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssrin 4192 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 |
| This theorem is referenced by: fictb 10135 isacs1i 17563 rescabs 17740 lsmdisj 19594 dmdprdsplit2lem 19960 rhmsscrnghm 20581 rngcresringcat 20585 acsfn1p 20715 obselocv 21666 restbas 23074 neitr 23096 restcls 23097 restntr 23098 nrmsep 23273 cldllycmp 23411 fclsneii 23933 tsmsres 24060 trcfilu 24209 metdseq0 24771 iundisj2 25478 uniioombllem3 25514 ppisval 27042 ppisval2 27043 chtwordi 27094 ppiwordi 27100 chpub 27159 chebbnd1lem1 27408 mdbr2 32274 mdslj1i 32297 mdsl2i 32300 mdslmd1lem1 32303 mdslmd3i 32310 mdexchi 32313 sumdmdlem 32396 iundisj2f 32568 iundisj2fi 32777 cycpmco2f1 33091 tocyccntz 33111 esumrnmpt2 34079 bnj1177 35016 sstotbnd2 37820 lcvexchlem5 39083 pnonsingN 39978 dochnoncon 41436 eldioph2lem2 42800 limsupres 45749 limsupresxr 45810 liminfresxr 45811 liminflelimsuplem 45819 ssdisjd 48845 |
| Copyright terms: Public domain | W3C validator |