| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version | ||
| Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssrin 4222 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3930 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-ss 3948 |
| This theorem is referenced by: fictb 10266 isacs1i 17671 rescabs 17848 rescabsOLD 17849 lsmdisj 19667 dmdprdsplit2lem 20033 rhmsscrnghm 20633 rngcresringcat 20637 acsfn1p 20768 obselocv 21702 restbas 23112 neitr 23134 restcls 23135 restntr 23136 nrmsep 23311 cldllycmp 23449 fclsneii 23971 tsmsres 24098 trcfilu 24248 metdseq0 24812 iundisj2 25520 uniioombllem3 25556 ppisval 27083 ppisval2 27084 chtwordi 27135 ppiwordi 27141 chpub 27200 chebbnd1lem1 27449 mdbr2 32243 mdslj1i 32266 mdsl2i 32269 mdslmd1lem1 32272 mdslmd3i 32279 mdexchi 32282 sumdmdlem 32365 iundisj2f 32538 iundisj2fi 32738 cycpmco2f1 33083 tocyccntz 33103 esumrnmpt2 34028 bnj1177 34979 sstotbnd2 37740 lcvexchlem5 38998 pnonsingN 39894 dochnoncon 41352 eldioph2lem2 42735 limsupres 45677 limsupresxr 45738 liminfresxr 45739 liminflelimsuplem 45747 ssdisjd 48685 |
| Copyright terms: Public domain | W3C validator |