![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssrin 4034 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3769 ⊆ wss 3770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2778 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-v 3388 df-in 3777 df-ss 3784 |
This theorem is referenced by: fictb 9356 isacs1i 16631 rescabs 16806 lsmdisj 18406 dmdprdsplit2lem 18759 obselocv 20396 restbas 21290 neitr 21312 restcls 21313 restntr 21314 nrmsep 21489 cldllycmp 21626 fclsneii 22148 tsmsres 22274 trcfilu 22425 metdseq0 22984 iundisj2 23656 uniioombllem3 23692 ppisval 25181 ppisval2 25182 chtwordi 25233 ppiwordi 25239 chpub 25296 chebbnd1lem1 25509 mdbr2 29679 mdslj1i 29702 mdsl2i 29705 mdslmd1lem1 29708 mdslmd3i 29715 mdexchi 29718 sumdmdlem 29801 iundisj2f 29919 iundisj2fi 30073 esumrnmpt2 30645 bnj1177 31590 sstotbnd2 34059 lcvexchlem5 35058 pnonsingN 35953 dochnoncon 37411 eldioph2lem2 38105 acsfn1p 38549 limsupres 40676 limsupresxr 40737 liminfresxr 40738 liminflelimsuplem 40746 rhmsscrnghm 42820 rngcresringcat 42824 |
Copyright terms: Public domain | W3C validator |