Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssrin 4140 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3859 ⊆ wss 3860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 |
This theorem is referenced by: fictb 9718 isacs1i 17000 rescabs 17176 lsmdisj 18888 dmdprdsplit2lem 19249 acsfn1p 19660 obselocv 20507 restbas 21872 neitr 21894 restcls 21895 restntr 21896 nrmsep 22071 cldllycmp 22209 fclsneii 22731 tsmsres 22858 trcfilu 23009 metdseq0 23569 iundisj2 24263 uniioombllem3 24299 ppisval 25802 ppisval2 25803 chtwordi 25854 ppiwordi 25860 chpub 25917 chebbnd1lem1 26166 mdbr2 30192 mdslj1i 30215 mdsl2i 30218 mdslmd1lem1 30221 mdslmd3i 30228 mdexchi 30231 sumdmdlem 30314 iundisj2f 30465 iundisj2fi 30655 cycpmco2f1 30930 tocyccntz 30950 esumrnmpt2 31568 bnj1177 32519 sstotbnd2 35527 lcvexchlem5 36649 pnonsingN 37544 dochnoncon 39002 eldioph2lem2 40120 limsupres 42758 limsupresxr 42819 liminfresxr 42820 liminflelimsuplem 42828 rhmsscrnghm 45076 rngcresringcat 45080 ssdisjd 45637 |
Copyright terms: Public domain | W3C validator |