Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssrin 4167 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: fictb 10001 isacs1i 17366 rescabs 17547 rescabsOLD 17548 lsmdisj 19287 dmdprdsplit2lem 19648 acsfn1p 20067 obselocv 20935 restbas 22309 neitr 22331 restcls 22332 restntr 22333 nrmsep 22508 cldllycmp 22646 fclsneii 23168 tsmsres 23295 trcfilu 23446 metdseq0 24017 iundisj2 24713 uniioombllem3 24749 ppisval 26253 ppisval2 26254 chtwordi 26305 ppiwordi 26311 chpub 26368 chebbnd1lem1 26617 mdbr2 30658 mdslj1i 30681 mdsl2i 30684 mdslmd1lem1 30687 mdslmd3i 30694 mdexchi 30697 sumdmdlem 30780 iundisj2f 30929 iundisj2fi 31118 cycpmco2f1 31391 tocyccntz 31411 esumrnmpt2 32036 bnj1177 32986 sstotbnd2 35932 lcvexchlem5 37052 pnonsingN 37947 dochnoncon 39405 eldioph2lem2 40583 limsupres 43246 limsupresxr 43307 liminfresxr 43308 liminflelimsuplem 43316 rhmsscrnghm 45584 rngcresringcat 45588 ssdisjd 46153 |
Copyright terms: Public domain | W3C validator |