![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrind | Structured version Visualization version GIF version |
Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
ssrind.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssrind | ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrind.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssrin 4225 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3939 ⊆ wss 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 |
This theorem is referenced by: fictb 10235 isacs1i 17597 rescabs 17778 rescabsOLD 17779 lsmdisj 19586 dmdprdsplit2lem 19952 rhmsscrnghm 20546 rngcresringcat 20550 acsfn1p 20635 obselocv 21583 restbas 22972 neitr 22994 restcls 22995 restntr 22996 nrmsep 23171 cldllycmp 23309 fclsneii 23831 tsmsres 23958 trcfilu 24109 metdseq0 24680 iundisj2 25388 uniioombllem3 25424 ppisval 26940 ppisval2 26941 chtwordi 26992 ppiwordi 26998 chpub 27057 chebbnd1lem1 27306 mdbr2 31973 mdslj1i 31996 mdsl2i 31999 mdslmd1lem1 32002 mdslmd3i 32009 mdexchi 32012 sumdmdlem 32095 iundisj2f 32245 iundisj2fi 32432 cycpmco2f1 32710 tocyccntz 32730 esumrnmpt2 33521 bnj1177 34472 sstotbnd2 37098 lcvexchlem5 38364 pnonsingN 39260 dochnoncon 40718 eldioph2lem2 41954 limsupres 44872 limsupresxr 44933 liminfresxr 44934 liminflelimsuplem 44942 ssdisjd 47646 |
Copyright terms: Public domain | W3C validator |