Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdisj2 Structured version   Visualization version   GIF version

Theorem iccdisj2 48795
Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
iccdisj2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)

Proof of Theorem iccdisj2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐴 ∈ ℝ*)
2 simp3 1139 . . . . 5 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐵 < 𝐶)
3 ltrelxr 11322 . . . . . 6 < ⊆ (ℝ* × ℝ*)
43brel 5750 . . . . 5 (𝐵 < 𝐶 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
52, 4syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
65simprd 495 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
71xrleidd 13194 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐴𝐴)
8 iccssico 13459 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐴𝐵 < 𝐶)) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶))
91, 6, 7, 2, 8syl22anc 839 . 2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶))
10 simp2 1138 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐷 ∈ ℝ*)
11 df-ico 13393 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
12 df-icc 13394 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
13 xrlenlt 11326 . . . 4 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶𝑤 ↔ ¬ 𝑤 < 𝐶))
1411, 12, 13ixxdisj 13402 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅)
151, 6, 10, 14syl3anc 1373 . 2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅)
169, 15ssdisjd 48727 1 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cin 3950  wss 3951  c0 4333   class class class wbr 5143  (class class class)co 7431  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389  [,]cicc 13390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ico 13393  df-icc 13394
This theorem is referenced by:  iccdisj  48796  sepfsepc  48825
  Copyright terms: Public domain W3C validator