Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdisj2 Structured version   Visualization version   GIF version

Theorem iccdisj2 47618
Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
iccdisj2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)

Proof of Theorem iccdisj2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐴 ∈ ℝ*)
2 simp3 1138 . . . . 5 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐵 < 𝐶)
3 ltrelxr 11279 . . . . . 6 < ⊆ (ℝ* × ℝ*)
43brel 5741 . . . . 5 (𝐵 < 𝐶 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
52, 4syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
65simprd 496 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
71xrleidd 13135 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐴𝐴)
8 iccssico 13400 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐴𝐵 < 𝐶)) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶))
91, 6, 7, 2, 8syl22anc 837 . 2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶))
10 simp2 1137 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐷 ∈ ℝ*)
11 df-ico 13334 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
12 df-icc 13335 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
13 xrlenlt 11283 . . . 4 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶𝑤 ↔ ¬ 𝑤 < 𝐶))
1411, 12, 13ixxdisj 13343 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅)
151, 6, 10, 14syl3anc 1371 . 2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅)
169, 15ssdisjd 47580 1 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cin 3947  wss 3948  c0 4322   class class class wbr 5148  (class class class)co 7411  *cxr 11251   < clt 11252  cle 11253  [,)cico 13330  [,]cicc 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-ico 13334  df-icc 13335
This theorem is referenced by:  iccdisj  47619  sepfsepc  47648
  Copyright terms: Public domain W3C validator