![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccdisj2 | Structured version Visualization version GIF version |
Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
Ref | Expression |
---|---|
iccdisj2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ*) | |
2 | simp3 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶) | |
3 | ltrelxr 11282 | . . . . . 6 ⊢ < ⊆ (ℝ* × ℝ*) | |
4 | 3 | brel 5741 | . . . . 5 ⊢ (𝐵 < 𝐶 → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
6 | 5 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*) |
7 | 1 | xrleidd 13138 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐴) |
8 | iccssico 13403 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐵 < 𝐶)) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶)) | |
9 | 1, 6, 7, 2, 8 | syl22anc 836 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶)) |
10 | simp2 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐷 ∈ ℝ*) | |
11 | df-ico 13337 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
12 | df-icc 13338 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
13 | xrlenlt 11286 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐶 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐶)) | |
14 | 11, 12, 13 | ixxdisj 13346 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅) |
15 | 1, 6, 10, 14 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅) |
16 | 9, 15 | ssdisjd 47654 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 (class class class)co 7412 ℝ*cxr 11254 < clt 11255 ≤ cle 11256 [,)cico 13333 [,]cicc 13334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-ico 13337 df-icc 13338 |
This theorem is referenced by: iccdisj 47693 sepfsepc 47722 |
Copyright terms: Public domain | W3C validator |