Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdisj2 Structured version   Visualization version   GIF version

Theorem iccdisj2 48694
Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
Assertion
Ref Expression
iccdisj2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)

Proof of Theorem iccdisj2
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐴 ∈ ℝ*)
2 simp3 1137 . . . . 5 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐵 < 𝐶)
3 ltrelxr 11320 . . . . . 6 < ⊆ (ℝ* × ℝ*)
43brel 5754 . . . . 5 (𝐵 < 𝐶 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
52, 4syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
65simprd 495 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐶 ∈ ℝ*)
71xrleidd 13191 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐴𝐴)
8 iccssico 13456 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐴𝐵 < 𝐶)) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶))
91, 6, 7, 2, 8syl22anc 839 . 2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶))
10 simp2 1136 . . 3 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → 𝐷 ∈ ℝ*)
11 df-ico 13390 . . . 4 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
12 df-icc 13391 . . . 4 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
13 xrlenlt 11324 . . . 4 ((𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐶𝑤 ↔ ¬ 𝑤 < 𝐶))
1411, 12, 13ixxdisj 13399 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅)
151, 6, 10, 14syl3anc 1370 . 2 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅)
169, 15ssdisjd 48656 1 ((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cin 3962  wss 3963  c0 4339   class class class wbr 5148  (class class class)co 7431  *cxr 11292   < clt 11293  cle 11294  [,)cico 13386  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ico 13390  df-icc 13391
This theorem is referenced by:  iccdisj  48695  sepfsepc  48724
  Copyright terms: Public domain W3C validator