Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccdisj2 | Structured version Visualization version GIF version |
Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
Ref | Expression |
---|---|
iccdisj2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ*) | |
2 | simp3 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶) | |
3 | ltrelxr 10967 | . . . . . 6 ⊢ < ⊆ (ℝ* × ℝ*) | |
4 | 3 | brel 5643 | . . . . 5 ⊢ (𝐵 < 𝐶 → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
6 | 5 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*) |
7 | 1 | xrleidd 12815 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐴) |
8 | iccssico 13080 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐵 < 𝐶)) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶)) | |
9 | 1, 6, 7, 2, 8 | syl22anc 835 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶)) |
10 | simp2 1135 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐷 ∈ ℝ*) | |
11 | df-ico 13014 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
12 | df-icc 13015 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
13 | xrlenlt 10971 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐶 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐶)) | |
14 | 11, 12, 13 | ixxdisj 13023 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅) |
15 | 1, 6, 10, 14 | syl3anc 1369 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅) |
16 | 9, 15 | ssdisjd 46041 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 (class class class)co 7255 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,)cico 13010 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 df-icc 13015 |
This theorem is referenced by: iccdisj 46080 sepfsepc 46109 |
Copyright terms: Public domain | W3C validator |