| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccdisj2 | Structured version Visualization version GIF version | ||
| Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| iccdisj2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐴 ∈ ℝ*) | |
| 2 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐵 < 𝐶) | |
| 3 | ltrelxr 11176 | . . . . . 6 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 4 | 3 | brel 5684 | . . . . 5 ⊢ (𝐵 < 𝐶 → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) |
| 6 | 5 | simprd 495 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐶 ∈ ℝ*) |
| 7 | 1 | xrleidd 13054 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐴 ≤ 𝐴) |
| 8 | iccssico 13321 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴 ≤ 𝐴 ∧ 𝐵 < 𝐶)) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶)) | |
| 9 | 1, 6, 7, 2, 8 | syl22anc 838 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → (𝐴[,]𝐵) ⊆ (𝐴[,)𝐶)) |
| 10 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → 𝐷 ∈ ℝ*) | |
| 11 | df-ico 13254 | . . . 4 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
| 12 | df-icc 13255 | . . . 4 ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | |
| 13 | xrlenlt 11180 | . . . 4 ⊢ ((𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐶 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐶)) | |
| 14 | 11, 12, 13 | ixxdisj 13263 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅) |
| 15 | 1, 6, 10, 14 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,)𝐶) ∩ (𝐶[,]𝐷)) = ∅) |
| 16 | 9, 15 | ssdisjd 48792 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 (class class class)co 7349 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 [,)cico 13250 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ico 13254 df-icc 13255 |
| This theorem is referenced by: iccdisj 48882 sepfsepc 48912 |
| Copyright terms: Public domain | W3C validator |