![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version |
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) |
vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
Ref | Expression |
---|---|
vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2949 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) | |
4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
5 | 1, 2, 3, 4 | ssmapsn 41019 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑𝑚 {𝐴})) |
6 | 5 | ineq1d 4108 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ↑𝑚 {𝐴}) ∩ (𝐵 ↑𝑚 {𝐴}))) |
7 | reex 10474 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
9 | 3 | sselda 3889 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑𝑚 {𝐴})) |
10 | elmapi 8278 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑𝑚 {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
12 | 11 | frnd 6389 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
13 | 12 | ralrimiva 3149 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
14 | iunss 4868 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
15 | 13, 14 | sylibr 235 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
16 | 4, 15 | syl5eqss 3936 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
17 | 8, 16 | ssexd 5119 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
18 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
19 | 8, 18 | ssexd 5119 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
20 | snex 5223 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
22 | 17, 19, 21 | inmap 41012 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) |
23 | 6, 22 | eqtrd 2831 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) |
24 | 23 | fveq2d 6542 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑𝑚 {𝐴}))) |
25 | 16 | ssinss1d 40849 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
26 | 2, 25 | ovnovol 42483 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
27 | 24, 26 | eqtrd 2831 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
28 | 5 | difeq1d 4019 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ↑𝑚 {𝐴}) ∖ (𝐵 ↑𝑚 {𝐴}))) |
29 | 17, 19, 2 | difmapsn 41015 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) |
30 | 28, 29 | eqtrd 2831 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) |
31 | 30 | fveq2d 6542 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑𝑚 {𝐴}))) |
32 | 16 | ssdifssd 4040 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
33 | 2, 32 | ovnovol 42483 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
34 | 31, 33 | eqtrd 2831 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
35 | 27, 34 | oveq12d 7034 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
36 | 5 | fveq2d 6542 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑𝑚 {𝐴}))) |
37 | 2, 16 | ovnovol 42483 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑𝑚 {𝐴})) = (vol*‘𝑌)) |
38 | 17, 16 | elpwd 4462 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
39 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
40 | fveq2 6538 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
41 | ineq1 4101 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
42 | 41 | fveq2d 6542 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
43 | difeq1 4013 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
44 | 43 | fveq2d 6542 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
45 | 42, 44 | oveq12d 7034 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
46 | 40, 45 | eqeq12d 2810 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
47 | 46 | rspcva 3557 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
48 | 38, 39, 47 | syl2anc 584 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
49 | 36, 37, 48 | 3eqtrd 2835 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
50 | 35, 49 | eqtr4d 2834 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∀wral 3105 Vcvv 3437 ∖ cdif 3856 ∩ cin 3858 ⊆ wss 3859 𝒫 cpw 4453 {csn 4472 ∪ ciun 4825 ran crn 5444 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ↑𝑚 cmap 8256 ℝcr 10382 +𝑒 cxad 12355 vol*covol 23746 voln*covoln 42360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-of 7267 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-2o 7954 df-oadd 7957 df-er 8139 df-map 8258 df-pm 8259 df-ixp 8311 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fi 8721 df-sup 8752 df-inf 8753 df-oi 8820 df-dju 9176 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ioo 12592 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-rlim 14680 df-sum 14877 df-prod 15093 df-rest 16525 df-topgen 16546 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-top 21186 df-topon 21203 df-bases 21238 df-cmp 21679 df-ovol 23748 df-vol 23749 df-sumge0 42187 df-ovoln 42361 |
This theorem is referenced by: vonvolmbl 42485 |
Copyright terms: Public domain | W3C validator |