| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version | ||
| Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
| vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) |
| vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
| Ref | Expression |
|---|---|
| vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
| 2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) | |
| 4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
| 5 | 1, 2, 3, 4 | ssmapsn 45183 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑m {𝐴})) |
| 6 | 5 | ineq1d 4178 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴}))) |
| 7 | reex 11135 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
| 9 | 3 | sselda 3943 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴})) |
| 10 | elmapi 8799 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
| 12 | 11 | frnd 6678 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
| 13 | 12 | ralrimiva 3125 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
| 14 | iunss 5004 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
| 15 | 13, 14 | sylibr 234 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
| 16 | 4, 15 | eqsstrid 3982 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
| 17 | 8, 16 | ssexd 5274 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
| 18 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 19 | 8, 18 | ssexd 5274 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
| 20 | snex 5386 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
| 22 | 17, 19, 21 | inmap 45176 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
| 23 | 6, 22 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
| 24 | 23 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴}))) |
| 25 | 16 | ssinss1d 4206 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
| 26 | 2, 25 | ovnovol 46630 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
| 27 | 24, 26 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
| 28 | 5 | difeq1d 4084 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴}))) |
| 29 | 17, 19, 2 | difmapsn 45179 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
| 30 | 28, 29 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
| 31 | 30 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴}))) |
| 32 | 16 | ssdifssd 4106 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
| 33 | 2, 32 | ovnovol 46630 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
| 34 | 31, 33 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
| 35 | 27, 34 | oveq12d 7387 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 36 | 5 | fveq2d 6844 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴}))) |
| 37 | 2, 16 | ovnovol 46630 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴})) = (vol*‘𝑌)) |
| 38 | 17, 16 | elpwd 4565 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
| 39 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
| 40 | fveq2 6840 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
| 41 | ineq1 4172 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
| 42 | 41 | fveq2d 6844 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
| 43 | difeq1 4078 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
| 44 | 43 | fveq2d 6844 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
| 45 | 42, 44 | oveq12d 7387 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 46 | 40, 45 | eqeq12d 2745 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
| 47 | 46 | rspcva 3583 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 48 | 38, 39, 47 | syl2anc 584 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 49 | 36, 37, 48 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 50 | 35, 49 | eqtr4d 2767 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 {csn 4585 ∪ ciun 4951 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 +𝑒 cxad 13046 vol*covol 25339 voln*covoln 46507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-prod 15846 df-rest 17361 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-bases 22809 df-cmp 23250 df-ovol 25341 df-vol 25342 df-sumge0 46334 df-ovoln 46508 |
| This theorem is referenced by: vonvolmbl 46632 |
| Copyright terms: Public domain | W3C validator |