Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbllem Structured version   Visualization version   GIF version

Theorem vonvolmbllem 43873
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbllem.a (𝜑𝐴𝑉)
vonvolmbllem.b (𝜑𝐵 ⊆ ℝ)
vonvolmbllem.e (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
vonvolmbllem.x (𝜑𝑋 ⊆ (ℝ ↑m {𝐴}))
vonvolmbllem.y 𝑌 = 𝑓𝑋 ran 𝑓
Assertion
Ref Expression
vonvolmbllem (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Distinct variable groups:   𝐴,𝑓   𝑦,𝐵   𝑓,𝑋   𝑓,𝑌   𝑦,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑓)   𝑉(𝑦,𝑓)   𝑋(𝑦)

Proof of Theorem vonvolmbllem
StepHypRef Expression
1 nfcv 2904 . . . . . . . 8 𝑓𝑌
2 vonvolmbllem.a . . . . . . . 8 (𝜑𝐴𝑉)
3 vonvolmbllem.x . . . . . . . 8 (𝜑𝑋 ⊆ (ℝ ↑m {𝐴}))
4 vonvolmbllem.y . . . . . . . 8 𝑌 = 𝑓𝑋 ran 𝑓
51, 2, 3, 4ssmapsn 42429 . . . . . . 7 (𝜑𝑋 = (𝑌m {𝐴}))
65ineq1d 4126 . . . . . 6 (𝜑 → (𝑋 ∩ (𝐵m {𝐴})) = ((𝑌m {𝐴}) ∩ (𝐵m {𝐴})))
7 reex 10820 . . . . . . . . 9 ℝ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
93sselda 3901 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴}))
10 elmapi 8530 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ)
119, 10syl 17 . . . . . . . . . . . 12 ((𝜑𝑓𝑋) → 𝑓:{𝐴}⟶ℝ)
1211frnd 6553 . . . . . . . . . . 11 ((𝜑𝑓𝑋) → ran 𝑓 ⊆ ℝ)
1312ralrimiva 3105 . . . . . . . . . 10 (𝜑 → ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
14 iunss 4954 . . . . . . . . . 10 ( 𝑓𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
1513, 14sylibr 237 . . . . . . . . 9 (𝜑 𝑓𝑋 ran 𝑓 ⊆ ℝ)
164, 15eqsstrid 3949 . . . . . . . 8 (𝜑𝑌 ⊆ ℝ)
178, 16ssexd 5217 . . . . . . 7 (𝜑𝑌 ∈ V)
18 vonvolmbllem.b . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
198, 18ssexd 5217 . . . . . . 7 (𝜑𝐵 ∈ V)
20 snex 5324 . . . . . . . 8 {𝐴} ∈ V
2120a1i 11 . . . . . . 7 (𝜑 → {𝐴} ∈ V)
2217, 19, 21inmap 42422 . . . . . 6 (𝜑 → ((𝑌m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
236, 22eqtrd 2777 . . . . 5 (𝜑 → (𝑋 ∩ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
2423fveq2d 6721 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})))
2516ssinss1d 42269 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
262, 25ovnovol 43872 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})) = (vol*‘(𝑌𝐵)))
2724, 26eqtrd 2777 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) = (vol*‘(𝑌𝐵)))
285difeq1d 4036 . . . . . 6 (𝜑 → (𝑋 ∖ (𝐵m {𝐴})) = ((𝑌m {𝐴}) ∖ (𝐵m {𝐴})))
2917, 19, 2difmapsn 42425 . . . . . 6 (𝜑 → ((𝑌m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
3028, 29eqtrd 2777 . . . . 5 (𝜑 → (𝑋 ∖ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
3130fveq2d 6721 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})))
3216ssdifssd 4057 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
332, 32ovnovol 43872 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})) = (vol*‘(𝑌𝐵)))
3431, 33eqtrd 2777 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴}))) = (vol*‘(𝑌𝐵)))
3527, 34oveq12d 7231 . 2 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
365fveq2d 6721 . . 3 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌m {𝐴})))
372, 16ovnovol 43872 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑌m {𝐴})) = (vol*‘𝑌))
3817, 16elpwd 4521 . . . 4 (𝜑𝑌 ∈ 𝒫 ℝ)
39 vonvolmbllem.e . . . 4 (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
40 fveq2 6717 . . . . . 6 (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌))
41 ineq1 4120 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4241fveq2d 6721 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
43 difeq1 4030 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4443fveq2d 6721 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
4542, 44oveq12d 7231 . . . . . 6 (𝑦 = 𝑌 → ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4640, 45eqeq12d 2753 . . . . 5 (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵)))))
4746rspcva 3535 . . . 4 ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4838, 39, 47syl2anc 587 . . 3 (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4936, 37, 483eqtrd 2781 . 2 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
5035, 49eqtr4d 2780 1 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cdif 3863  cin 3865  wss 3866  𝒫 cpw 4513  {csn 4541   ciun 4904  ran crn 5552  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  cr 10728   +𝑒 cxad 12702  vol*covol 24359  voln*covoln 43749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-prod 15468  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-bases 21843  df-cmp 22284  df-ovol 24361  df-vol 24362  df-sumge0 43576  df-ovoln 43750
This theorem is referenced by:  vonvolmbl  43874
  Copyright terms: Public domain W3C validator