Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version |
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) |
vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
Ref | Expression |
---|---|
vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) | |
4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
5 | 1, 2, 3, 4 | ssmapsn 42756 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑m {𝐴})) |
6 | 5 | ineq1d 4145 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴}))) |
7 | reex 10962 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
9 | 3 | sselda 3921 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴})) |
10 | elmapi 8637 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
12 | 11 | frnd 6608 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
13 | 12 | ralrimiva 3103 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
14 | iunss 4975 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
15 | 13, 14 | sylibr 233 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
16 | 4, 15 | eqsstrid 3969 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
17 | 8, 16 | ssexd 5248 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
18 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
19 | 8, 18 | ssexd 5248 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
20 | snex 5354 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
22 | 17, 19, 21 | inmap 42749 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
23 | 6, 22 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
24 | 23 | fveq2d 6778 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴}))) |
25 | 16 | ssinss1d 42596 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
26 | 2, 25 | ovnovol 44197 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
27 | 24, 26 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
28 | 5 | difeq1d 4056 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴}))) |
29 | 17, 19, 2 | difmapsn 42752 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
30 | 28, 29 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
31 | 30 | fveq2d 6778 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴}))) |
32 | 16 | ssdifssd 4077 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
33 | 2, 32 | ovnovol 44197 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
34 | 31, 33 | eqtrd 2778 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
35 | 27, 34 | oveq12d 7293 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
36 | 5 | fveq2d 6778 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴}))) |
37 | 2, 16 | ovnovol 44197 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴})) = (vol*‘𝑌)) |
38 | 17, 16 | elpwd 4541 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
39 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
40 | fveq2 6774 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
41 | ineq1 4139 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
42 | 41 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
43 | difeq1 4050 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
44 | 43 | fveq2d 6778 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
45 | 42, 44 | oveq12d 7293 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
46 | 40, 45 | eqeq12d 2754 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
47 | 46 | rspcva 3559 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
48 | 38, 39, 47 | syl2anc 584 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
49 | 36, 37, 48 | 3eqtrd 2782 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
50 | 35, 49 | eqtr4d 2781 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ∪ ciun 4924 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℝcr 10870 +𝑒 cxad 12846 vol*covol 24626 voln*covoln 44074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-prod 15616 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 df-vol 24629 df-sumge0 43901 df-ovoln 44075 |
This theorem is referenced by: vonvolmbl 44199 |
Copyright terms: Public domain | W3C validator |