| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version | ||
| Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
| vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) |
| vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
| Ref | Expression |
|---|---|
| vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
| 2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) | |
| 4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
| 5 | 1, 2, 3, 4 | ssmapsn 45220 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑m {𝐴})) |
| 6 | 5 | ineq1d 4199 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴}))) |
| 7 | reex 11225 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
| 9 | 3 | sselda 3963 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴})) |
| 10 | elmapi 8868 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
| 12 | 11 | frnd 6719 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
| 13 | 12 | ralrimiva 3133 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
| 14 | iunss 5026 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
| 15 | 13, 14 | sylibr 234 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
| 16 | 4, 15 | eqsstrid 4002 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
| 17 | 8, 16 | ssexd 5299 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
| 18 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 19 | 8, 18 | ssexd 5299 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
| 20 | snex 5411 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
| 22 | 17, 19, 21 | inmap 45213 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
| 23 | 6, 22 | eqtrd 2771 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
| 24 | 23 | fveq2d 6885 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴}))) |
| 25 | 16 | ssinss1d 4227 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
| 26 | 2, 25 | ovnovol 46668 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
| 27 | 24, 26 | eqtrd 2771 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
| 28 | 5 | difeq1d 4105 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴}))) |
| 29 | 17, 19, 2 | difmapsn 45216 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
| 30 | 28, 29 | eqtrd 2771 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
| 31 | 30 | fveq2d 6885 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴}))) |
| 32 | 16 | ssdifssd 4127 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
| 33 | 2, 32 | ovnovol 46668 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
| 34 | 31, 33 | eqtrd 2771 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
| 35 | 27, 34 | oveq12d 7428 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 36 | 5 | fveq2d 6885 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴}))) |
| 37 | 2, 16 | ovnovol 46668 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴})) = (vol*‘𝑌)) |
| 38 | 17, 16 | elpwd 4586 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
| 39 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
| 40 | fveq2 6881 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
| 41 | ineq1 4193 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
| 42 | 41 | fveq2d 6885 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
| 43 | difeq1 4099 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
| 44 | 43 | fveq2d 6885 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
| 45 | 42, 44 | oveq12d 7428 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 46 | 40, 45 | eqeq12d 2752 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
| 47 | 46 | rspcva 3604 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 48 | 38, 39, 47 | syl2anc 584 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 49 | 36, 37, 48 | 3eqtrd 2775 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 50 | 35, 49 | eqtr4d 2774 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 𝒫 cpw 4580 {csn 4606 ∪ ciun 4972 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℝcr 11133 +𝑒 cxad 13131 vol*covol 25420 voln*covoln 46545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-prod 15925 df-rest 17441 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-top 22837 df-topon 22854 df-bases 22889 df-cmp 23330 df-ovol 25422 df-vol 25423 df-sumge0 46372 df-ovoln 46546 |
| This theorem is referenced by: vonvolmbl 46670 |
| Copyright terms: Public domain | W3C validator |