| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version | ||
| Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
| vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
| vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) |
| vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
| Ref | Expression |
|---|---|
| vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
| 2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) | |
| 4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
| 5 | 1, 2, 3, 4 | ssmapsn 45210 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑m {𝐴})) |
| 6 | 5 | ineq1d 4182 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴}))) |
| 7 | reex 11159 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
| 8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
| 9 | 3 | sselda 3946 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴})) |
| 10 | elmapi 8822 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
| 12 | 11 | frnd 6696 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
| 13 | 12 | ralrimiva 3125 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
| 14 | iunss 5009 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
| 15 | 13, 14 | sylibr 234 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
| 16 | 4, 15 | eqsstrid 3985 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
| 17 | 8, 16 | ssexd 5279 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
| 18 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
| 19 | 8, 18 | ssexd 5279 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
| 20 | snex 5391 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
| 22 | 17, 19, 21 | inmap 45203 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
| 23 | 6, 22 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
| 24 | 23 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴}))) |
| 25 | 16 | ssinss1d 4210 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
| 26 | 2, 25 | ovnovol 46657 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
| 27 | 24, 26 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
| 28 | 5 | difeq1d 4088 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴}))) |
| 29 | 17, 19, 2 | difmapsn 45206 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
| 30 | 28, 29 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
| 31 | 30 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴}))) |
| 32 | 16 | ssdifssd 4110 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
| 33 | 2, 32 | ovnovol 46657 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
| 34 | 31, 33 | eqtrd 2764 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
| 35 | 27, 34 | oveq12d 7405 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 36 | 5 | fveq2d 6862 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴}))) |
| 37 | 2, 16 | ovnovol 46657 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴})) = (vol*‘𝑌)) |
| 38 | 17, 16 | elpwd 4569 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
| 39 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
| 40 | fveq2 6858 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
| 41 | ineq1 4176 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
| 42 | 41 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
| 43 | difeq1 4082 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
| 44 | 43 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
| 45 | 42, 44 | oveq12d 7405 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 46 | 40, 45 | eqeq12d 2745 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
| 47 | 46 | rspcva 3586 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 48 | 38, 39, 47 | syl2anc 584 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 49 | 36, 37, 48 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
| 50 | 35, 49 | eqtr4d 2767 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ∪ ciun 4955 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℝcr 11067 +𝑒 cxad 13070 vol*covol 25363 voln*covoln 46534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-ovol 25365 df-vol 25366 df-sumge0 46361 df-ovoln 46535 |
| This theorem is referenced by: vonvolmbl 46659 |
| Copyright terms: Public domain | W3C validator |