Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version |
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) |
vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
Ref | Expression |
---|---|
vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑m {𝐴})) | |
4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
5 | 1, 2, 3, 4 | ssmapsn 42429 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑m {𝐴})) |
6 | 5 | ineq1d 4126 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴}))) |
7 | reex 10820 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
9 | 3 | sselda 3901 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴})) |
10 | elmapi 8530 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
12 | 11 | frnd 6553 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
13 | 12 | ralrimiva 3105 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
14 | iunss 4954 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
15 | 13, 14 | sylibr 237 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
16 | 4, 15 | eqsstrid 3949 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
17 | 8, 16 | ssexd 5217 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
18 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
19 | 8, 18 | ssexd 5217 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
20 | snex 5324 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
22 | 17, 19, 21 | inmap 42422 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
23 | 6, 22 | eqtrd 2777 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑m {𝐴})) = ((𝑌 ∩ 𝐵) ↑m {𝐴})) |
24 | 23 | fveq2d 6721 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴}))) |
25 | 16 | ssinss1d 42269 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
26 | 2, 25 | ovnovol 43872 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
27 | 24, 26 | eqtrd 2777 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
28 | 5 | difeq1d 4036 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴}))) |
29 | 17, 19, 2 | difmapsn 42425 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑m {𝐴}) ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
30 | 28, 29 | eqtrd 2777 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑m {𝐴})) = ((𝑌 ∖ 𝐵) ↑m {𝐴})) |
31 | 30 | fveq2d 6721 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴}))) |
32 | 16 | ssdifssd 4057 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
33 | 2, 32 | ovnovol 43872 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑m {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
34 | 31, 33 | eqtrd 2777 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
35 | 27, 34 | oveq12d 7231 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
36 | 5 | fveq2d 6721 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴}))) |
37 | 2, 16 | ovnovol 43872 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑m {𝐴})) = (vol*‘𝑌)) |
38 | 17, 16 | elpwd 4521 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
39 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
40 | fveq2 6717 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
41 | ineq1 4120 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
42 | 41 | fveq2d 6721 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
43 | difeq1 4030 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
44 | 43 | fveq2d 6721 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
45 | 42, 44 | oveq12d 7231 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
46 | 40, 45 | eqeq12d 2753 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
47 | 46 | rspcva 3535 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
48 | 38, 39, 47 | syl2anc 587 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
49 | 36, 37, 48 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
50 | 35, 49 | eqtr4d 2780 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑m {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 Vcvv 3408 ∖ cdif 3863 ∩ cin 3865 ⊆ wss 3866 𝒫 cpw 4513 {csn 4541 ∪ ciun 4904 ran crn 5552 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 ↑m cmap 8508 ℝcr 10728 +𝑒 cxad 12702 vol*covol 24359 voln*covoln 43749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-dju 9517 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-q 12545 df-rp 12587 df-xneg 12704 df-xadd 12705 df-xmul 12706 df-ioo 12939 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-fl 13367 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-rlim 15050 df-sum 15250 df-prod 15468 df-rest 16927 df-topgen 16948 df-psmet 20355 df-xmet 20356 df-met 20357 df-bl 20358 df-mopn 20359 df-top 21791 df-topon 21808 df-bases 21843 df-cmp 22284 df-ovol 24361 df-vol 24362 df-sumge0 43576 df-ovoln 43750 |
This theorem is referenced by: vonvolmbl 43874 |
Copyright terms: Public domain | W3C validator |