Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbllem Structured version   Visualization version   GIF version

Theorem vonvolmbllem 41517
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbllem.a (𝜑𝐴𝑉)
vonvolmbllem.b (𝜑𝐵 ⊆ ℝ)
vonvolmbllem.e (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
vonvolmbllem.x (𝜑𝑋 ⊆ (ℝ ↑𝑚 {𝐴}))
vonvolmbllem.y 𝑌 = 𝑓𝑋 ran 𝑓
Assertion
Ref Expression
vonvolmbllem (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Distinct variable groups:   𝐴,𝑓   𝑦,𝐵   𝑓,𝑋   𝑓,𝑌   𝑦,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑓)   𝑉(𝑦,𝑓)   𝑋(𝑦)

Proof of Theorem vonvolmbllem
StepHypRef Expression
1 nfcv 2907 . . . . . . . 8 𝑓𝑌
2 vonvolmbllem.a . . . . . . . 8 (𝜑𝐴𝑉)
3 vonvolmbllem.x . . . . . . . 8 (𝜑𝑋 ⊆ (ℝ ↑𝑚 {𝐴}))
4 vonvolmbllem.y . . . . . . . 8 𝑌 = 𝑓𝑋 ran 𝑓
51, 2, 3, 4ssmapsn 40056 . . . . . . 7 (𝜑𝑋 = (𝑌𝑚 {𝐴}))
65ineq1d 3977 . . . . . 6 (𝜑 → (𝑋 ∩ (𝐵𝑚 {𝐴})) = ((𝑌𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})))
7 reex 10282 . . . . . . . . 9 ℝ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
93sselda 3763 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋) → 𝑓 ∈ (ℝ ↑𝑚 {𝐴}))
10 elmapi 8084 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑𝑚 {𝐴}) → 𝑓:{𝐴}⟶ℝ)
119, 10syl 17 . . . . . . . . . . . 12 ((𝜑𝑓𝑋) → 𝑓:{𝐴}⟶ℝ)
1211frnd 6232 . . . . . . . . . . 11 ((𝜑𝑓𝑋) → ran 𝑓 ⊆ ℝ)
1312ralrimiva 3113 . . . . . . . . . 10 (𝜑 → ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
14 iunss 4719 . . . . . . . . . 10 ( 𝑓𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
1513, 14sylibr 225 . . . . . . . . 9 (𝜑 𝑓𝑋 ran 𝑓 ⊆ ℝ)
164, 15syl5eqss 3811 . . . . . . . 8 (𝜑𝑌 ⊆ ℝ)
178, 16ssexd 4968 . . . . . . 7 (𝜑𝑌 ∈ V)
18 vonvolmbllem.b . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
198, 18ssexd 4968 . . . . . . 7 (𝜑𝐵 ∈ V)
20 snex 5066 . . . . . . . 8 {𝐴} ∈ V
2120a1i 11 . . . . . . 7 (𝜑 → {𝐴} ∈ V)
2217, 19, 21inmap 40049 . . . . . 6 (𝜑 → ((𝑌𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})) = ((𝑌𝐵) ↑𝑚 {𝐴}))
236, 22eqtrd 2799 . . . . 5 (𝜑 → (𝑋 ∩ (𝐵𝑚 {𝐴})) = ((𝑌𝐵) ↑𝑚 {𝐴}))
2423fveq2d 6381 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑𝑚 {𝐴})))
2516ssinss1d 39868 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
262, 25ovnovol 41516 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌𝐵)))
2724, 26eqtrd 2799 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵𝑚 {𝐴}))) = (vol*‘(𝑌𝐵)))
285difeq1d 3891 . . . . . 6 (𝜑 → (𝑋 ∖ (𝐵𝑚 {𝐴})) = ((𝑌𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))
2917, 19, 2difmapsn 40052 . . . . . 6 (𝜑 → ((𝑌𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})) = ((𝑌𝐵) ↑𝑚 {𝐴}))
3028, 29eqtrd 2799 . . . . 5 (𝜑 → (𝑋 ∖ (𝐵𝑚 {𝐴})) = ((𝑌𝐵) ↑𝑚 {𝐴}))
3130fveq2d 6381 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑𝑚 {𝐴})))
3216ssdifssd 3912 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
332, 32ovnovol 41516 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌𝐵)))
3431, 33eqtrd 2799 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵𝑚 {𝐴}))) = (vol*‘(𝑌𝐵)))
3527, 34oveq12d 6862 . 2 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵𝑚 {𝐴})))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
365fveq2d 6381 . . 3 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌𝑚 {𝐴})))
372, 16ovnovol 41516 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑌𝑚 {𝐴})) = (vol*‘𝑌))
3817, 16elpwd 4326 . . . 4 (𝜑𝑌 ∈ 𝒫 ℝ)
39 vonvolmbllem.e . . . 4 (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
40 fveq2 6377 . . . . . 6 (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌))
41 ineq1 3971 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4241fveq2d 6381 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
43 difeq1 3885 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4443fveq2d 6381 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
4542, 44oveq12d 6862 . . . . . 6 (𝑦 = 𝑌 → ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4640, 45eqeq12d 2780 . . . . 5 (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵)))))
4746rspcva 3460 . . . 4 ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4838, 39, 47syl2anc 579 . . 3 (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4936, 37, 483eqtrd 2803 . 2 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
5035, 49eqtr4d 2802 1 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  cdif 3731  cin 3733  wss 3734  𝒫 cpw 4317  {csn 4336   ciun 4678  ran crn 5280  wf 6066  cfv 6070  (class class class)co 6844  𝑚 cmap 8062  cr 10190   +𝑒 cxad 12147  vol*covol 23523  voln*covoln 41393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-rlim 14508  df-sum 14705  df-prod 14922  df-rest 16352  df-topgen 16373  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-top 20981  df-topon 20998  df-bases 21033  df-cmp 21473  df-ovol 23525  df-vol 23526  df-sumge0 41220  df-ovoln 41394
This theorem is referenced by:  vonvolmbl  41518
  Copyright terms: Public domain W3C validator