Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbllem Structured version   Visualization version   GIF version

Theorem vonvolmbllem 46658
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbllem.a (𝜑𝐴𝑉)
vonvolmbllem.b (𝜑𝐵 ⊆ ℝ)
vonvolmbllem.e (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
vonvolmbllem.x (𝜑𝑋 ⊆ (ℝ ↑m {𝐴}))
vonvolmbllem.y 𝑌 = 𝑓𝑋 ran 𝑓
Assertion
Ref Expression
vonvolmbllem (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Distinct variable groups:   𝐴,𝑓   𝑦,𝐵   𝑓,𝑋   𝑓,𝑌   𝑦,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑓)   𝑉(𝑦,𝑓)   𝑋(𝑦)

Proof of Theorem vonvolmbllem
StepHypRef Expression
1 nfcv 2891 . . . . . . . 8 𝑓𝑌
2 vonvolmbllem.a . . . . . . . 8 (𝜑𝐴𝑉)
3 vonvolmbllem.x . . . . . . . 8 (𝜑𝑋 ⊆ (ℝ ↑m {𝐴}))
4 vonvolmbllem.y . . . . . . . 8 𝑌 = 𝑓𝑋 ran 𝑓
51, 2, 3, 4ssmapsn 45210 . . . . . . 7 (𝜑𝑋 = (𝑌m {𝐴}))
65ineq1d 4182 . . . . . 6 (𝜑 → (𝑋 ∩ (𝐵m {𝐴})) = ((𝑌m {𝐴}) ∩ (𝐵m {𝐴})))
7 reex 11159 . . . . . . . . 9 ℝ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
93sselda 3946 . . . . . . . . . . . . 13 ((𝜑𝑓𝑋) → 𝑓 ∈ (ℝ ↑m {𝐴}))
10 elmapi 8822 . . . . . . . . . . . . 13 (𝑓 ∈ (ℝ ↑m {𝐴}) → 𝑓:{𝐴}⟶ℝ)
119, 10syl 17 . . . . . . . . . . . 12 ((𝜑𝑓𝑋) → 𝑓:{𝐴}⟶ℝ)
1211frnd 6696 . . . . . . . . . . 11 ((𝜑𝑓𝑋) → ran 𝑓 ⊆ ℝ)
1312ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
14 iunss 5009 . . . . . . . . . 10 ( 𝑓𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓𝑋 ran 𝑓 ⊆ ℝ)
1513, 14sylibr 234 . . . . . . . . 9 (𝜑 𝑓𝑋 ran 𝑓 ⊆ ℝ)
164, 15eqsstrid 3985 . . . . . . . 8 (𝜑𝑌 ⊆ ℝ)
178, 16ssexd 5279 . . . . . . 7 (𝜑𝑌 ∈ V)
18 vonvolmbllem.b . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
198, 18ssexd 5279 . . . . . . 7 (𝜑𝐵 ∈ V)
20 snex 5391 . . . . . . . 8 {𝐴} ∈ V
2120a1i 11 . . . . . . 7 (𝜑 → {𝐴} ∈ V)
2217, 19, 21inmap 45203 . . . . . 6 (𝜑 → ((𝑌m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
236, 22eqtrd 2764 . . . . 5 (𝜑 → (𝑋 ∩ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
2423fveq2d 6862 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})))
2516ssinss1d 4210 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
262, 25ovnovol 46657 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})) = (vol*‘(𝑌𝐵)))
2724, 26eqtrd 2764 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) = (vol*‘(𝑌𝐵)))
285difeq1d 4088 . . . . . 6 (𝜑 → (𝑋 ∖ (𝐵m {𝐴})) = ((𝑌m {𝐴}) ∖ (𝐵m {𝐴})))
2917, 19, 2difmapsn 45206 . . . . . 6 (𝜑 → ((𝑌m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
3028, 29eqtrd 2764 . . . . 5 (𝜑 → (𝑋 ∖ (𝐵m {𝐴})) = ((𝑌𝐵) ↑m {𝐴}))
3130fveq2d 6862 . . . 4 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})))
3216ssdifssd 4110 . . . . 5 (𝜑 → (𝑌𝐵) ⊆ ℝ)
332, 32ovnovol 46657 . . . 4 (𝜑 → ((voln*‘{𝐴})‘((𝑌𝐵) ↑m {𝐴})) = (vol*‘(𝑌𝐵)))
3431, 33eqtrd 2764 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴}))) = (vol*‘(𝑌𝐵)))
3527, 34oveq12d 7405 . 2 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
365fveq2d 6862 . . 3 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌m {𝐴})))
372, 16ovnovol 46657 . . 3 (𝜑 → ((voln*‘{𝐴})‘(𝑌m {𝐴})) = (vol*‘𝑌))
3817, 16elpwd 4569 . . . 4 (𝜑𝑌 ∈ 𝒫 ℝ)
39 vonvolmbllem.e . . . 4 (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
40 fveq2 6858 . . . . . 6 (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌))
41 ineq1 4176 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4241fveq2d 6862 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
43 difeq1 4082 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝐵) = (𝑌𝐵))
4443fveq2d 6862 . . . . . . 7 (𝑦 = 𝑌 → (vol*‘(𝑦𝐵)) = (vol*‘(𝑌𝐵)))
4542, 44oveq12d 7405 . . . . . 6 (𝑦 = 𝑌 → ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4640, 45eqeq12d 2745 . . . . 5 (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵)))))
4746rspcva 3586 . . . 4 ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4838, 39, 47syl2anc 584 . . 3 (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
4936, 37, 483eqtrd 2768 . 2 (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌𝐵)) +𝑒 (vol*‘(𝑌𝐵))))
5035, 49eqtr4d 2767 1 (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4563  {csn 4589   ciun 4955  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067   +𝑒 cxad 13070  vol*covol 25363  voln*covoln 46534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-ovol 25365  df-vol 25366  df-sumge0 46361  df-ovoln 46535
This theorem is referenced by:  vonvolmbl  46659
  Copyright terms: Public domain W3C validator